轴向柱塞泵摩擦副功率损失分析与表面形貌设计研究
发布时间:2017-12-28 10:10
本文关键词:轴向柱塞泵摩擦副功率损失分析与表面形貌设计研究 出处:《浙江大学》2017年博士论文 论文类型:学位论文
更多相关文章: 轴向柱塞泵 摩擦损失 泄漏容积损失 压缩容积损失 表面形貌 固液耦合柱 塞副测试台 减摩抗磨
【摘要】:节能和高效是当今液压传动技术研究的一个重点和难点,变排量泵控系统取代阀控系统,可以显著提高液压传动系统能量的利用率,有助于降低系统装机功率和发热量,提高系统可靠性和工作寿命,为主机装备的最终用户带来可观的经济效益,因此,液压传动系统直接泵控、无阀化是其未来发展趋势。在泵控系统中,作为动力源的轴向柱塞泵,其全工况效率性能在整机液压传动系统效率性能中的影响已日渐凸显,本学位论文基于这一背景,对全工况下轴向柱塞泵效率与能耗变化、分布特征,及能耗产生机理与摩擦副节能高效设计技术展开研究,目的在于为节能高效、高可靠性轴向柱塞泵摩擦副的设计奠定理论基础,提供设计方法,提高轴向柱塞泵综合性能,选题具有广泛的工程应用背景和重要的学术研究价值。本学位论文首先基于数学理论分析、动态仿真建模和试验测试相结合的方法,对轴向柱塞泵在不同压力、转速和排量等级工况下的效率,以及轴向柱塞泵内部分布于各摩擦副处的摩擦损失、容积损失等能耗变化、分布特征与产生机理进行了研究,发现轴向柱塞泵总效率随着排量的减小而快速降低,在低压工况时泵也处于低效区,且在低效区时泵总效率的降低在68~97%的程度上是由摩擦副处摩擦损失引起的,其中柱塞副及滑靴副处的摩擦损失是轴向柱塞泵主要的两个功率损失源;为此,论文接着进一步地以柱塞副为研究对象,提出了柱塞副油膜与摩擦界面结构体间固液耦合作用变形矩阵法求解方法,该方法基于有限容积法(FVM)解油膜流体润滑方程,通过提出的基于有限元(FEM)软件的摩擦界面计算节点规则化设置及变形矩阵精准计算方法,获得与油膜流体求解域计算节点一一对应的系列变形矩阵,基于变形矩阵对弹性变形方程进行离散化,通过将变形矩阵融入于油膜流体计算程序内部,实现油膜流体域与摩擦偶件固体域融于一体的、单一计算领域环境下的高效双向固液耦合计算,在此基础上,进一步建立起了柱塞副油膜流体动力润滑计算模型,以及油膜与摩擦界面结构体之间的耦合作用弹性流体动力润滑计算模型,并分析了柱塞副油膜的固液耦合作用现象及其润滑承载机理;另一方面,为在实践中考察柱塞副的润滑承载性能,以中、大排量等级及高速高压为设计参数,研制了基于斜盘旋转驱动的柱塞副三轴力解耦与同步测试装置,实现对柱塞副中径向方向的油膜负载力、以及相对较小的轴向摩擦力的既解耦独立又实时同步的检测,基于柱塞副三轴力测试装置,测试分析了不同转速及压力工况下柱塞副的摩擦学性能,并对建立的柱塞副油膜润滑模型等理论模型进行了实验验证;论文最后,基于建立的柱塞副油膜润滑模型,提出了柱塞副表面形貌摩擦学设计与分析方法,通过理论与实验测试分析了不同表面形貌结构的摩擦界面对柱塞副减摩性能的影响,得到了一种新型的顺锥形柱塞孔表面形貌结构,对比于传统的柱形结构柱塞副,新型的顺锥形结构的柱塞副在全工况范围内具有更小的泄漏损失,更好的减摩抗磨性能,在工艺性方面也不难于实现加工制造,其中的顺锥形柱塞孔结构的S20型缸体试件对应的柱塞副,与传统的柱形柱塞孔结构的Z30型缸体试件对应的柱塞副相对比,在不同试验工况下其减摩率最高达到-40.1%,最低时也达到了-22.1%,综合最优的顺锥形柱塞孔表面形貌几何结构为:柱塞孔中锥形区域高度差为柱形区域柱塞与柱塞孔间隙大小的46.67%,锥形区域轴向分布长度为柱塞与柱塞孔最大接触长度的49.44%。论文主要结构如下:第一章,指出了论文研究的背景和意义,对国内外主要的轴向柱塞泵科研院所和企业相关研究情况进行调研,综述了轴向柱塞泵摩擦副功率损失分析及表面形貌摩擦学设计相关技术的研究现状和发展趋势,在此基础上确定了本学位论文的研究内容和技术难点。第二章,轴向柱塞泵全工况下效率及能耗变化与分布特征分析。采用数学理论分析、动态仿真建模和试验测试相结合的方法,对轴向柱塞泵在不同压力、转速及排量等级下的效率,以及各摩擦副处的摩擦损失、容积损失等能耗变化、分布特征与产生机理进行研究。第三章,分析柱塞副间隙内油膜与摩擦界面结构体间的固液耦合作用现象及其润滑承载机理,建立油膜润滑计算模型,为节能高效、高可靠性柱塞副结构的设计奠定理论研究基础。第四章,柱塞副力学特性测试方法研究与试验分析。研制中、大排量等级高压高速柱塞副三轴力解耦与同步测试装置,实现对柱塞副中径向方向的油膜负载力及轴向摩擦力的同步检测,测试分析不同工况下柱塞副的摩擦学性能,并对建立的柱塞滑靴组件动力学数学模型,柱塞副油膜润滑模型以及试验台主体机构动力学仿真模型进行实验验证。第五章,柱塞副表面形貌摩擦学设计与性能强化。分析柱塞副摩擦界面微观形貌几何结构的建模方法,提出柱塞副表面形貌摩擦学设计与分析方法,通过理论及实验研究不同表面形貌结构对柱塞副减摩抗磨性能的影响,设计较易于加工制造的、具有更小容积损失及更好的减摩抗磨性能的表面形貌结构,并验证提出的柱塞副表面形貌摩擦学设计与分析方法的正确性。第六章,对论文的研究结论进行总结,在此基础上提出本博士学位论文的创新点,并展望该研究课题的后续研究方向。
[Abstract]:Energy saving and efficiency is a key and difficult point in the research of hydraulic transmission technology, variable displacement pump control system to replace the valve control system, can significantly improve the utilization rate of energy hydraulic transmission system, helps to reduce system installed power and heat, improve system reliability and working life, for the end user equipment to bring the host considerable economic benefits, therefore, direct pump hydraulic system control valve, is the future development trend. In the pump control system, as the axial piston pump power source, affects the performance of the whole machine performance efficiency in power efficiency in the hydraulic transmission system has become increasingly prominent. This thesis is based on this background, changes in all conditions of axial piston pump efficiency and energy distribution, and energy consumption have studied the mechanism and technology of friction Deputy energy efficient design, the purpose is to establish the theoretical basis for high efficiency, high reliability of friction pair in axial piston pump design, design methods, improve the comprehensive performance of axial piston pump, the topic has extensive engineering application background and important academic value. In this paper, based on the method of mathematical analysis, dynamic simulation modeling and test combining the efficiency of axial piston pump under different pressure, speed and displacement level condition, and the friction loss, axial piston pump internal friction pair is distributed to the volume loss of energy consumption changes, distribution characteristics and the formation mechanism of study found that the total efficiency of axial piston pump and the rapid decrease with the displacement decreases, in the condition of low pressure when the pump is in the inefficient zone, and reduce the total efficiency of 68 in the area of inefficient pump ~ 97% degree is caused by friction or friction loss, the piston pair and the slipper pair of the axial piston friction loss two pump power loss of the main source; therefore, the paper then further to the piston as the research object, put forward the solid-liquid coupling piston oil film and friction interface structure between Solving the deformation matrix method, the method based on the finite volume method (FVM) solution of oil film lubrication equation, through the proposed based on finite element (FEM) friction interface software computing node rule setting and matrix deformation precision calculation method, and obtain the oil film fluid solution domain computing nodes corresponding to the series of deformation matrix. The transformation matrix is used to discretize the elastic deformation equation based on the deformation matrix into the oil film flow calculation program, to achieve efficient bidirectional solid-liquid coupling oil film and friction coupling of single fluid domain calculation of solid domain into one field, computing environment, on this basis, further establish a plunger oil film the hydrodynamic lubrication calculation model, as well as between the oil film and friction interface structure coupling elastic hydrodynamic lubrication calculation model, and analyzes the effect of solid-liquid coupling piston pair of oil film The phenomenon and mechanism of bearing lubrication; on the other hand, in practice for investigation of lubrication piston bearing performance in large displacement and high voltage level as design parameters, developed plunger pair three axis force decoupling of rotation of the swash plate drive and synchronous test device based on the oil film on the piston side in the radial direction the load, as well as the decoupling independent relatively small axial friction and synchronous detection, plunger pair three axis force testing device based on test and analysis of tribological performance of piston pairs at different speed and pressure conditions, and the establishment of the plunger oil film lubrication model and the theoretical model is verified by experiment; thesis finally, the plunger oil film lubrication model based on the proposed design and analysis method of plunger pair surface tribology, through theoretical and experimental test analysis of friction interface of different surface structure Effect of piston friction reducing performance, a cis tapered plunger hole surface microstructure model is obtained. The columnar structure of plunger pair compared to the traditional model, the structure of the CIS tapered piston pair in the whole operating range with smaller leakage loss, friction reduction and antiwear properties better, in the process of it not difficult to achieve manufacturing, the CIS S20 type cylinder conical column jack structure specimens corresponding to the plunger vice, the specimen corresponding to the plunger pair compared with Z30 type of cylinder cylinder plunger hole structure of the traditional in different test condition the friction ratio reached -40.1%, the lowest also reached -22.1% comprehensive, optimal CIS tapered plunger hole surface morphology of geometric structure: the piston hole cone height difference cylindrical region of the plunger and the plunger hole clearance 46.67% cone axial distribution of length of maximum contact plunger and the plunger hole 49.44% of the length. The main contents are as follows: the first chapter points out the background and significance of the research of the main axial piston pump research institute and the relevant research on the situation of enterprises to conduct research, summarized the axial piston pump friction pair research status and development trend analysis of power loss of surface topography and tribological design of related technology, on the basis of the research content and the technical difficulties of this thesis were determined. In the second chapter, the changes and distribution characteristics of the efficiency and energy consumption of the axial piston pump are analyzed in all conditions. By using the method of mathematical analysis, dynamic simulation modeling and test combining the efficiency of axial piston pump under different pressure, speed and displacement level, and friction loss, the friction pair volume loss energy change, distribution characteristics and mechanism research. The third chapter analyzes the solid liquid coupling phenomenon and the lubrication bearing mechanism between the oil film and the frictional interface structure, and establishes the oil film lubrication calculation model, so as to lay a theoretical foundation for the design of the sub structure of energy saving, high efficiency and high reliability. The fourth chapter is the research and test analysis of the test method of the mechanical characteristics of the plunger. Three axial force decoupling and synchronization of high pressure and high speed plunger pair in medium and large displacement
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TH137.51
,
本文编号:1345578
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1345578.html