当前位置:主页 > 科技论文 > 机电工程论文 >

钛合金高压扭转变形过程数值模拟研究

发布时间:2018-01-13 04:27

  本文关键词:钛合金高压扭转变形过程数值模拟研究 出处:《合肥工业大学》2017年硕士论文 论文类型:学位论文


  更多相关文章: TC4钛合金 高压扭转 Deform-3D 数值模拟 置氢


【摘要】:钛合金作为一种轻质材料而被广泛使用。高压扭转(high-pressure torsion,HPT)作为一种大塑性变形(severe plastic deformation,SPD)方法被广泛应用于各种材料的塑性加工过程中。研究钛合金高压扭转变形过程,分析不同变形因素对钛合金高压扭转变形过程的影响规律。对于后续钛合金高压扭转实验的具体实施具有重要的意义。本文利用Deform-3D模拟软件对高压扭转过程进行模拟。首先利用UG造型软件建立三维模型,然后将模型导入Deform-3D软件中,从而就建立了钛合金高压扭转的三维模型。通过改变钛合金高压扭转变形过程中各种参数,利用Deform-3D软件对其进行模拟,分析不同工艺因素对钛合金高压扭转变形过程的影响。本文分析摩擦因子对三种典型钛合金TA11α型钛合金、TB6β型钛合金、TC4α+β型钛合金高压扭转变形过程中等效应变和相对扭转角度的影响,得到不同类型钛合金的高压扭转变形规律。通过分析摩擦因子和变形温度对TC4钛合金高压扭转变形过程的影响规律,得到TC4钛合金在高压扭转过程中破损系数、等效应变、等效应力、表面膨胀比、速度矢量的分布和变化规律。通过置氢与未置氢TC4钛合金高压扭转变形过程的比较,得到置氢对TC4钛合金高压扭转变形过程的影响。数值模拟结果表明:对于TA11α型钛合金,随着摩擦因子的增加,等效应变先降低而后增加,相对扭转角度先升高而后降低;对于TB6β型钛合金,摩擦因子对其高压扭转变形过程中等效应变和相对扭转角度影响规律与TA11α型钛合金一致;而对于TC4α+β型钛合金,随着摩擦因子的增加,等效应变逐渐增加,相对扭转角度先升高后降低最后再次升高。对于TC4钛合金,随着摩擦因子的增加,试样上表面破损系数数值在0.5~0.6左右,高压扭转变形过程中等效应变、表面膨胀比均增加,速度矢量的大小逐渐减小。等效应变在径向和轴向方向分布不均匀,等效应力在径向和轴向方向的分布较为均匀,几乎保持在一条水平线上;随着变形温度的增加,试样上表面的破损系数变化维持在0.6~0.9左右。随着变形温度的增加,高压扭转过程中等效应变和速度矢量的大小逐渐增加,等效应力和表面膨胀比的大小均逐渐减小。等效应变在径向和轴向方向分布不均匀,等效应力在径向和轴向方向分布较为均匀,几乎保持在一条水平线上。置氢能够改善TC4钛合金高压扭转坯料的表面质量,能够使得变形深入到坯料内部,并且使得变形均匀。本文模拟结果表明不同类型钛合金材料高压扭转变形过程不同。摩擦因子越大越有利于高压扭转过程的进行,变形温度越高越有利于塑性变形的进行,实际难以实现高温下钛合金的高压扭转过程。置氢对于钛合金高压扭转过程是有益的。
[Abstract]:Titanium alloy is widely used as a light material. High pressure torsion. HPT) as a kind of large plastic deformation severe plastic deformation. SPD method is widely used in the plastic processing of various materials. The high pressure torsional deformation process of titanium alloy is studied. The influence of different deformation factors on the high-pressure torsional deformation process of titanium alloy is analyzed. It is of great significance to carry out the subsequent high-pressure torsion experiment of titanium alloy. In this paper, Deform-3D software is used to simulate the deformation of titanium alloy. The high-pressure torsion process is simulated. Firstly, the three-dimensional model is built by UG modeling software. Then the model is imported into Deform-3D software, and a three-dimensional model of high pressure torsion of titanium alloy is established. By changing the parameters of the process of high pressure torsion deformation of titanium alloy. The effects of different process factors on the high-pressure torsional deformation of titanium alloy were analyzed by Deform-3D software. The friction factors on three typical titanium alloys TA11 伪 type titanium alloy were analyzed in this paper. The effect of equivalent strain and relative torsion angle on TB6 尾 titanium alloy TC4 伪 尾 titanium alloy during high pressure torsional deformation. The effects of friction factor and deformation temperature on the high-pressure torsional deformation of TC4 titanium alloy were analyzed. The damage coefficient, equivalent strain, equivalent stress and surface expansion ratio of TC4 titanium alloy under high pressure torsion were obtained. The distribution and variation of velocity vector. The comparison of the torsional deformation process of TC4 titanium alloy with and without hydrogen insertion was carried out at high pressure. The effect of hydrogen insertion on the high pressure torsional deformation of TC4 titanium alloy is obtained. The numerical simulation results show that for TA11 伪 titanium alloy, the equivalent strain decreases first and then increases with the increase of friction factor. The relative torsion angle increased first and then decreased; For TB6 尾 titanium alloy, the effect of friction factor on equivalent strain and relative torsion angle during high pressure torsion deformation is consistent with that of TA11 伪 titanium alloy. For TC4 伪 尾 titanium alloy, the equivalent strain increases gradually with the increase of friction factor, the relative torsion angle increases first, then decreases and then rises again. For TC4 titanium alloy, the equivalent strain increases gradually with the increase of friction factor. With the increase of friction factor, the damage coefficient of the upper surface of the specimen is about 0.5 ~ 0.6, and the equivalent strain and the surface expansion ratio increase in the process of high-pressure torsional deformation. The distribution of equivalent strain is not uniform in radial and axial direction, and the distribution of equivalent stress in radial and axial direction is more uniform, and the equivalent strain is almost kept at a horizontal line. With the increase of deformation temperature, the change of the damage coefficient of the upper surface of the specimen is maintained at 0.6 ~ 0.9. With the increase of deformation temperature, the equivalent strain and velocity vector increase gradually in the process of high-pressure torsion. The magnitude of equivalent stress and surface expansion ratio decrease gradually. The distribution of equivalent strain is not uniform in radial and axial directions, and the distribution of equivalent stress is more uniform in radial and axial directions. It can improve the surface quality of TC4 titanium alloy high pressure torsion blank and make the deformation go deep into the blank. The simulation results show that different types of titanium alloy materials have different high-pressure torsional deformation process. The larger the friction factor is, the more favorable the high-pressure torsion process is. The higher the deformation temperature is, the more favorable the plastic deformation is. It is difficult to realize the high-pressure torsion process of titanium alloy at high temperature, and the hydrogen insertion is beneficial to the high-pressure torsion process of titanium alloy.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG146.23;TG306

【相似文献】

相关期刊论文 前10条

1 金驷;汪大年;;测定挤压变形过程中摩擦因子值的新方法——等杯径双杯复合挤压[J];模具技术;1987年05期

2 陈尚伟;;幂律流体湍流摩擦因子的简化计算式[J];化学世界;1991年11期

3 刘学敏;田继红;刘建生;刘金豪;;热反挤润滑剂摩擦因子预测及模具磨损分析[J];太原科技大学学报;2012年04期

4 蔡洪能,孟繁森,史耀武;焊接扭转变形的试验研究[J];焊接技术;1994年02期

5 田继红;秦敏;刘建生;;Mn18Cr18N钢高温摩擦因子测定及其应用[J];矿山机械;2009年12期

6 朱法银,孙伟香,李毅然;环空中轴向层流的Fanning摩擦因子[J];胜利油田职工大学学报;1999年02期

7 李达人;刘祖岩;于洋;王尔德;;W-40%Cu热加工摩擦因子与换热系数测定[J];粉末冶金技术;2009年03期

8 江理建;吕海峰;石凤健;王亮;;多轴压缩坯料变形的有限元分析[J];热加工工艺;2009年07期

9 张磊;王晓艳;朱丽;李波;;电感耦合等离子体原子发射光谱法测定TC4钛合金中主量元素铝和钒[J];理化检验(化学分册);2011年06期

10 梁春雷;李晓延;巩水利;陈俐;;TC4钛合金薄板激光焊接头疲劳性能研究[J];材料工程;2006年04期

相关重要报纸文章 前2条

1 本报实习记者 蒋文雯 通讯员 罗耀华;宝钢数值模拟研究和应用领跑钢铁行业[N];中国冶金报;2012年

2 通讯员 朱江 冯明农;风能项目组研讨数值模拟产品共享[N];中国气象报;2010年

相关博士学位论文 前3条

1 杨文彬;几类反应扩散模型的动力学行为及其数值模拟[D];陕西师范大学;2015年

2 郄思远;多级环流装置的流体力学研究与其在分离过程中的应用[D];天津大学;2014年

3 黄利忠;库特两相流中固粒运动与碰撞的数值模拟[D];浙江大学;2015年

相关硕士学位论文 前10条

1 任娟莉;基于欧拉公式的摩擦因子求解算法设计[D];西安工业大学;2015年

2 胡煜涛;40-T混合磁体外超导线圈迫流氦流动摩擦因子分析[D];中国科学技术大学;2017年

3 张植琼;不同强化模型下H62黄铜模压形变的有限元模拟[D];福州大学;2014年

4 李小勇;TC4钛合金大规格铸锭及棒材生产工艺研究[D];西安建筑科技大学;2015年

5 吴中元;基于数值模拟的隧道窑能耗优化方法研究[D];广东工业大学;2016年

6 薛洪亮;热电自冷却系统数值模拟与实验研究[D];吉林大学;2016年

7 李姗;O_2/CO_2氛围下天然气燃烧数值模拟及热物性检测研究[D];长江大学;2016年

8 李海涛;粉煤灰固化充填密闭特性参数数值模拟研究[D];西安科技大学;2015年

9 王谭;立交桥与地铁站共站位条件下施工顺序对车站变形及内力的影响[D];华南理工大学;2016年

10 应业勇;TC4钛合金激光焊接变形与光致等离子体的行为研究[D];湖南大学;2016年



本文编号:1417474

资料下载
论文发表

本文链接:https://www.wllwen.com/jixiegongchenglunwen/1417474.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1051c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com