集成参数自适应调整及隐含层降噪的深层RBM算法
发布时间:2018-01-13 17:43
本文关键词:集成参数自适应调整及隐含层降噪的深层RBM算法 出处:《自动化学报》2017年05期 论文类型:期刊论文
【摘要】:深度置信网络是由若干层无监督的限制玻尔兹曼机(Restricted Boltzmann machines,RBM)和一层有监督的反馈神经网络组成的深层结构,该结构通过对低层输入的逐层抽象转化提取复杂输入及复杂分类数据的有效信息.然而,深度置信网络模型存在隐含层数及特征维数难以确定,后向有监督过程存在"导数消亡"问题,使得低层结构参数得不到有效的训练,而且噪声干扰直接影响识别结果的问题.针对以上问题,提出以下解决方法:每个隐含层位置构建当前层输出与样本标签之间的映射转换矩阵,根据理论标签与实际标签之间的差异,实现隐含层特征维数的自适应调整,缓解"导数消亡"问题,同时在第一隐含层位置进行特征空间降噪,保证计算效率及提高诊断模型的识别效果.复杂工况的齿轮箱故障模拟实验,验证所提方法的有效性.
[Abstract]:Deep belief network is composed of several layers of unsupervised restricted Boltzmann machine (Restricted Boltzmann machines, RBM) and a layer of supervised feedback neural network composed of deep structure, the structure of the low level input layer transform to extract information from complex input and complex data classification. However, there are hidden layers and features it is difficult to determine the depth dimension of belief network model, to the supervised process "derivative die", the lower level of structure parameters to the lack of effective training, but the noise directly affects the recognition results. To solve the above problems, put forward the following solutions: building the current position of each hidden layer mapping between the output layer and sample label the conversion matrix, based on the difference between the theoretical and actual label label, to achieve adaptive hidden layer feature dimension, alleviate the problem, the same number of guide die " In the first hidden layer, we denoise the feature space to ensure the computation efficiency and improve the recognition effect of the diagnosis model. The gearbox fault simulation experiment under complex working conditions proves the effectiveness of the proposed method.
【作者单位】: 厦门理工学院机械与汽车工程学院;
【基金】:国家自然科学基金(51605406,51475170,51605405,51405272) 厦门理工学院科研启动项目(YKJ14042R) 福建省自然科学基金青年基金(2014J05065) 广东高校青年创新人才项目(2014KQNCX176)资助~~
【分类号】:TH132.41;TP183
【正文快照】: 引用格式张绍辉.集成参数自适应调整及隐含层降噪的深层RBM算法.自动化学报,2017,43(5):855-865齿轮箱是旋转机械系统的重要组成部件,其运行状态的好坏直接影响到相应设备的工作状况,因此,国内外学者从机理、信号分析等方面对齿轮箱部件的故障诊断方法展开研究.然而,实际齿轮,
本文编号:1419895
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1419895.html