永磁耦合传动系统性能分析及测试
本文关键词:永磁耦合传动系统性能分析及测试 出处:《沈阳工业大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 圆筒型 永磁耦合器 结构优化 有限元软件 测试
【摘要】:自永磁传动技术迅速发展以来,永磁耦合器作为磁传动技术的主要仪器而被广泛地应用于机械、石化等行业中。本文研究的是圆筒型永磁耦合器,它不仅具备磁能利用率高、空载启动、无轴向力等优势,还通过主、从动转子之间的耦合作用来实现非物理性连接传动,从而解决了传统机械连接导致的密封、运输介质等问题,并能达到节能、环保的效果。随着国家可持续发展战略目标的深入,节约能源刻不容缓,因此,对永磁耦合器的性能分析就更加重要。本文利用Ansoft有限元软件对圆筒型永磁耦合器进行三维建模,并进行模型材料赋予、边界条件施加等设置,然后分析了不同结构参数对传递转矩、涡流损耗、平均磁密以及磁感应强度的影响。结果表明:当不同结构参数改变时,磁感应强度的变化趋势几乎与转矩相同;当其他参数不变时,转速差越大,传递转矩先增大后减小并在500rpm取得最大值,涡流损耗也始终增加;当转速差不变时,转矩、涡流损耗和平均磁密随着导体厚度、永磁体磁极数的增加呈现先增大后减小的趋势;当仅增大永磁体厚度时,转矩、涡流损耗和平均磁密呈先增加后平稳趋势;当仅增大气隙厚度时,三者呈减小趋势;另外,耦合面积越大,则耦合作用越明显,从而使转矩、涡流损耗以及平均磁密都不断增加。同时,根据软件仿真结果进行圆筒型永磁耦合器的结构优化并得出:该圆筒型永磁耦合器的最佳结构为磁极数12极,导体厚度5mm,永磁体厚度25mm,气隙厚度4mm,永磁体轴向长度30mm。然后对最优结构下的永磁耦合器进行建模和有限元分析,得到传递转矩值、涡流损耗值以及磁感应强度分布场图。最后,结合永磁耦合器工作特性,选取合理恰当的扭矩测量方法进行动态性能试验平台搭建,对最佳结构的圆筒型永磁耦合器在不同耦合面积、转速差之下的传递转矩值进行测定,并与有限元计算结果相对比,分析性能试验与软件模拟的关系,从而得出:有限元软件可以作为永磁耦合器分析的有效工具,其仿真结果与试验相同,误差较小。
[Abstract]:Since the rapid development of permanent magnetic transmission technology, permanent magnet coupler, as the main instrument of magnetic transmission technology, has been widely used in mechanical, petrochemical and other industries. It not only has the advantages of high utilization ratio of magnetic energy, no-load start, no axial force, but also realizes non-physical connection transmission by coupling between main and follower rotor, thus solving the seal caused by traditional mechanical connection. Transportation medium and other issues, and can achieve the effect of energy conservation, environmental protection. With the deepening of the strategic goal of national sustainable development, energy conservation is urgent, therefore. It is more important to analyze the performance of the permanent magnet coupler. In this paper, the three-dimensional modeling of the cylindrical permanent magnet coupler is carried out by using the Ansoft finite element software, and the model material is given and the boundary conditions are applied. Then, the effects of different structure parameters on transfer torque, eddy current loss, average magnetic density and magnetic induction intensity are analyzed. The variation trend of magnetic induction intensity is almost the same as that of torque. When the other parameters are not changed, the greater the speed difference, the higher the transfer torque first increases and then decreases and reaches the maximum value at 500rpm, and the eddy current loss increases all the time. When the rotational speed difference is constant, the torque, eddy current loss and average magnetic density increase with the thickness of conductor and the number of permanent magnets increases first and then decreases. When the thickness of permanent magnet is increased only, the torque, eddy current loss and average magnetic density increase first and then steady. When the thickness of the air gap is increased only, the three show a decreasing trend. In addition, the larger the coupling area, the more obvious the coupling effect is, thus increasing the torque, eddy current loss and average magnetic density. According to the simulation results, the structure of the cylindrical permanent magnet coupler is optimized. The optimum structure of the cylindrical permanent magnet coupler is that the magnetic pole number is 12 poles, the conductor thickness is 5 mm, and the permanent magnet thickness is 25 mm. The thickness of air gap is 4mm and the axial length of permanent magnet is 30mm. then the permanent magnet coupler with optimal structure is modeled and analyzed by finite element method, and the transfer torque is obtained. The eddy current loss and magnetic induction intensity distribution field diagram. Finally, combined with the characteristics of permanent magnet coupler, select a reasonable and appropriate torque measurement method to build a dynamic performance test platform. The transmission torque value of the cylindrical permanent magnet coupler with the best structure under different coupling areas and rotational speed difference is measured and compared with the finite element calculation results. The relationship between the performance test and the software simulation is analyzed. It is concluded that the finite element software can be used as an effective tool for the analysis of permanent magnet couplers. The simulation results are the same as those of the experiments, and the error is small.
【学位授予单位】:沈阳工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH139
【参考文献】
相关期刊论文 前10条
1 贺运初;潘树林;王满;;永磁调速器在泵与风机节能中的应用[J];电站辅机;2015年04期
2 方军;陶红艳;余成波;;基于Ansoft的圆筒式永磁调速器传动特性影响因素分析[J];重庆理工大学学报(自然科学);2015年12期
3 章振周;邱建忠;;两极工作式永磁耦合调速器的研究与开发[J];制造业自动化;2014年12期
4 刘廷安;;一种全新永磁传动技术[J];矿业装备;2014年01期
5 卢永;;永磁调速在机泵节能改造的应用[J];石油石化节能;2013年10期
6 敖晖;郑乃清;;基于ANSOFT的永磁同步电机电磁场分析[J];宁德师范学院学报(自然科学版);2013年03期
7 刘荣明;;中国稀土永磁产业现状及技术发展新动向[J];新材料产业;2013年01期
8 陈红;;基于An soft Maxwell 3D的电磁场分析与计算[J];宁波大学学报(理工版);2012年04期
9 李响;;永磁式调速器在鼓、引风机上的应用及节能分析[J];电世界;2012年06期
10 孙亮;刘松林;;关于磁力机械驱动技术的初步研究[J];电子世界;2012年04期
相关博士学位论文 前1条
1 王旭;永磁调速器磁路设计与建模分析技术的研究[D];东北大学;2013年
相关硕士学位论文 前10条
1 吉城龙;调速型筒式异步磁力耦合器传动性能与调速性能研究[D];江苏大学;2016年
2 吕沫;聚磁式永磁涡流耦合器的性能分析和测试[D];沈阳工业大学;2016年
3 高鑫;磁力耦合器传动性能的分析与研究[D];大连海事大学;2016年
4 冯勇;电动汽车用新型变速器的设计与研究[D];广东工业大学;2015年
5 李存贺;磁力耦合器特性研究及试验平台设计[D];大连海事大学;2014年
6 李雅楠;筒形永磁调速器工作特性分析[D];河北工业大学;2015年
7 石运卓;笼型转子异步磁力耦合器励磁系统结构分析及参数优化[D];大连交通大学;2013年
8 牛晓博;基于ANSYS的永磁调速器磁场研究[D];长安大学;2012年
9 王金博;永磁调速器建模与优化设计研究[D];东北大学;2011年
10 张宏刚;永磁磁力耦合器损耗的计算与分析[D];吉林大学;2008年
,本文编号:1423001
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1423001.html