用于压缩空气储能的微米级水雾冷却等温压缩实验研究
发布时间:2018-02-11 13:48
本文关键词: 喷雾 冷却 等温压缩 传热 压缩空气储能 出处:《液压与气动》2017年12期 论文类型:期刊论文
【摘要】:压缩空气储能(CAES)是一种大规模储能技术,可以用于调节城市电力供需,缓解用电高峰电力短缺,减少电网容量建设。目前,储能技术逐渐开始应用于城市,当电价下降时,采用电池储存电力,价格上升时,释放电力,利用峰谷电价差实现盈利。与电池相比,CAES容量大(100 MWh,电池小于10 MWh)、环保(无重金属污染),使用寿命长。但由于储能效率过低,通过电价差盈利空间小,投资回收期长是限制其商业应用的重要因素之一。目前,多数压缩空气储能系统都基于绝热压缩,大约有一半的电力被转化成了热量并耗散。由于压缩时空气的温度上升,导致压缩功增加,并转化得到更多的热。许多研究聚焦在增强压缩空气的散热来达到等温压缩。本研究提出将微米级(10~100μm)水雾喷入压缩空气与之混合,吸收压缩热,降低压缩空气温度,以实现等温。通过实验对压缩空气压力,体积和温度的变化特性进行了分析。对于总体积为0.94 L的压缩腔,当压缩比为2时,水雾冷却后,压缩功从177.9 J/循环(绝热)下降到121.2 J/循环,且效率达到88.7%(绝热61.6%)。
[Abstract]:Compressed air energy storage (CAESs) is a large-scale energy storage technology, which can be used to regulate the supply and demand of urban power, alleviate the shortage of peak electricity consumption, and reduce the capacity of power grid. At present, energy storage technology is gradually applied in cities, when the electricity price drops, Using batteries to store electricity, when prices rise, release electricity and make a profit by using the peak and valley price difference. Compared with the battery, CAES has a large capacity of 100 MWhs, a battery less than 10 MWhW, environmental protection (no heavy metal pollution, long service life), but because of the low energy storage efficiency, At present, most compressed air energy storage systems are based on adiabatic compression. About half of the electricity is converted into heat and dissipated. As the temperature of the air rises during compression, the compression power increases. Many studies have focused on the enhancement of the heat dissipation of compressed air to achieve isothermal compression. In this study, water mist was injected into compressed air and mixed with it to absorb the compression heat and reduce the temperature of compressed air. The variation of compressed air pressure, volume and temperature was analyzed by experiments. For the compressing chamber with a total volume of 0.94 L, when the compression ratio was 2:00, the water mist cooled, The compression power is reduced from 177.9 J / cycle (adiabatic) to 121.2 J / cycle, and the efficiency reaches 88.7% (adiabatic 61.6%).
【作者单位】: 自动化科学与电气工程学院北京航空航天大学;气动热力储能与供能北京市重点实验室;
【基金】:国家自然科学基金(51375028,51605013)
【分类号】:TH41;TK02
,
本文编号:1503201
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1503201.html