基于滑移信息熵与最优滤波器构建的故障诊断方法
发布时间:2018-02-24 12:12
本文关键词: 信息熵 滑移截取 最优滤波器 特征提取 滚动轴承 出处:《振动与冲击》2017年21期 论文类型:期刊论文
【摘要】:以故障信号局部包含信息的差异性为基础,结合相空间重构和信息熵理论,提出滑移信息熵序列对故障信息进行局部冲击特征识别。在此基础上,引入最小熵反卷积、最优滤波器构建等理论,成功实现了滚动轴承的微弱故障诊断。仿真数据和实验数据分析论证结果表明,提出的故障特征提取技术对于滚动轴承微弱冲击故障特征具有优越的识别和提取能力,对于实现滚动轴承强噪声背景下故障智能诊断具有重要的意义。
[Abstract]:Based on the difference of local information contained in fault signal, combined with phase space reconstruction and information entropy theory, a slip information entropy sequence is proposed to identify the local impact characteristics of fault information. On this basis, minimum entropy deconvolution is introduced. Based on the theory of optimal filter construction, the weak fault diagnosis of rolling bearing is successfully realized. The simulation data and experimental data are analyzed and demonstrated. The proposed fault feature extraction technique has a superior ability to identify and extract the weak impact fault features of rolling bearings, and is of great significance to the intelligent fault diagnosis of rolling bearings under the strong noise background.
【作者单位】: 浙江大学机械设计与自动化研究所;浙江大学热工与动力系统研究所;
【基金】:国家自然科学基金(51305392) 浙江省自然科学基金(LZ15E050001) 流体传动与控制国家重点实验室青年基金(SKLo FP_QN_1501)
【分类号】:TH17
,
本文编号:1530185
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1530185.html