阀芯旋转式激振阀关键技术研究
本文选题:电液激振器 切入点:阀芯旋转式激振阀 出处:《浙江大学》2016年博士论文 论文类型:学位论文
【摘要】:在现有的激振方式中,电液激振具有功率密度高、推力大、负载自适应和无级调幅等优点,因此获得了广泛的应用。与传统伺服阀控电液激振器相比,阀芯旋转式电液激振器可以突破阀芯往复运动结构存在的局限,获得更高的工作频率,但是针对振动实验、地震模拟等场合需要的精准振动问题,需要进一步研究。精准振动包括两个方面,一是振动频率准确,二是振动波形准确。阀芯旋转式激振阀是阀芯旋转式电液激振器的核心元件。阀芯旋转式电液激振器的工作频率由阀芯转速决定,振动波形由阀口形状和尺寸等几何特征决定,阀芯转速的稳定性以及振动波形和阀口几何特征的准确解算是这类激振技术发展关键技术。在国家自然科学基金"阀芯旋转式大功率电液激振基础理论和技术"(51275 499)的资助下对阀芯旋转式激振阀展开研究,针对目前阀芯旋转式电液激振技术中存在的振动不准确的问题,提出了以阀芯转速稳定为目标的液动力矩计算和补偿方法,以及以振动波形准确为目标的基于振动波形的阀口设计方法,为阀芯旋转式激振阀的设计提供依据。主要研究工作如下:1.根据阀芯旋转式激振阀的结构及其工作原理,综合考虑研究需要与加工难度,设计了矩形阀口、三角形阀口和半圆形阀口等三种不同阀口形状,对不同阀口形状下的过流面积、面积梯度以及当量通径等阀口面积特征进行计算。建立阀芯旋转式激振阀的压力一流量特性方程,分析结构参数对静态特性的影响。建立阀芯旋转式激振阀的受力模型,从阶跃响应和幅频特性角度研究阀芯旋转式激振阀的动态特性,分析结构参数和液动力矩对动态特性的影响。2.对阀芯旋转式激振阀的液动力矩进行理论分析,分别建立稳态液动力矩和瞬态液动力矩的理论计算模型。通过ANSYS ICEM CFD建立阀内部流场网格模型,采用AN-SYS/Fluent对阀芯旋转式激振阀的内部流场进行CFD仿真,分析了液动力矩随阀口压差和流量、阀芯转速以及阀芯角位移的变化规律,研究了结构参数对液动力矩的影响,在此基础上提出了液动力矩的补偿方法。3.建立阀芯旋转式电液激振器的数学模型,通过Matlab/Simulink对电液激振器的数学模型进行求解,分析了阀口形状、阀口轴向长度、阀口数量、系统供油压力和阀芯转速对电液激振器动态特性的影响。对振动波形进行频谱分析,分析阀口形状、阀口轴向长度以及系统供油压力对振动波形失真度的影响。通过电液激振器的数学模型得到阀口过流面积与振动波形的关系,进一步得到阀口轴向长度与振幅的映射关系,在此基础上提出了基于振动波形的阀口设计方法。4.搭建阀芯旋转式激振阀实验台,在实验台上分别开展静态特性、液动力矩和振动波形实验。通过实验对进油方向和回油方向单向通油和双向通油时稳态液动力矩的耦合情况进行研究,对所提出的液动力矩理论计算模型和补偿方法以及基于振动波形的阀口设计方法进行实验验证。
[Abstract]:In the excitation mode existing in the electro-hydraulic vibrator has high power density, large thrust, and the advantages of adaptive load stepless amplitude modulation, so it is widely used. Compared with the traditional servo valve controlled electro-hydraulic exciter, spool rotary electro-hydraulic exciter can break the reciprocating motion of the valve structure limited, get the higher frequency, but the vibration experiment, the vibration problem of accurate seismic simulation and other occasions need, need further study. The precise vibration includes two aspects, one is the vibration frequency is two accurate, the vibration waveform accurately. The spool rotating vibrating rotary spool valve is the core component of Electro-hydraulic Vibration Exciter the working frequency. The spool rotating type electro-hydraulic vibration exciter is decided by the spool speed decided by valve vibration wave shape and size of geometric characteristics, stability and speed of the spool valve vibration waveform and the geometric characteristics of the accurate solution Is this kind of development exciting technology. In the National Natural Science Fund "the spool rotating type high power Electro-hydraulic Vibration Theory and technology" (51275499) under the support of the rotary valve spool vibration of vibration of the existing rotary spool Electro-hydraulic Vibration Technology in the problem of inaccurate and put forward torque calculation and compensation method of moving target with spool speed stable solution, and to accurately target the vibration waveform design method based on vibration waveform of valve port, provide the basis for the design of rotary valve spool vibration. The main research work is as follows: 1. according to the structure and working principle of rotary valve vibration considering the need of the valve, and the difficulty of processing, design of rectangular valve, triangle valve port and semicircular valve port three different valve port of the valve port shape, different shapes of the flow area, gradient and equivalent area Through the diameter of the valve orifice area is calculated. A characteristic equation to establish flow characteristics of rotary valve spool vibration pressure, analysis of influence of structural parameters on the static characteristics of the force. To establish the model of rotary valve spool vibration, the dynamic characteristics of valve step response and amplitude frequency characteristics of rotary valve vibration from the angle of order analysis, structure parameters and hydrodynamic torque influence on the dynamic characteristics of the.2. on the spool rotary vibration valve hydraulic torque theory, steady hydrodynamic torque and transient hydrodynamic torque calculation model was established. The establishment of the valve interior flow field grid model by ANSYS ICEM CFD, the internal flow field of AN-SYS/Fluent on the rotary valve the vibration valve of the CFD simulation, analysis of the hydraulic torque with the valve pressure difference and flow rate, rotation speed and angular displacement of the spool valve changes, study the influence of structural parameters on hydraulic torque, on this base Based on the proposed mathematical model of hydrodynamic torque compensation method to establish the.3. spool rotary electro-hydraulic vibration exciter, by solving the mathematical model of Electro-hydraulic Vibration Exciter Matlab/Simulink, analysis of the valve shape, the axial length of the valve port, the valve port number, influence of supply pressure and valve speed of electro hydraulic vibration the dynamic characteristics of the isolator. The spectrum analysis of the vibration waveform, analysis of valve valve shape, axial length and supply pressure distortion effect on the vibration waveform. Relationship between the flow area of the valve port and the vibration waveform by the mathematical model of electro-hydraulic exciter, further mapping relationship between axial length and valve port the amplitude of the vibration wave is proposed based on the design method of.4. valve spool rotary valve vibration to build experimental platform based on static characteristics were carried out on a test rig, hydraulic torque and vibration waveform through the experiment. The coupling between the direction of oil inlet and the direction of oil return and the steady state hydrodynamic torque of two-way oil passing is studied experimentally. The theoretical calculation model and compensation method of the proposed hydrodynamic torque and the design method of valve port based on the vibration waveform are experimentally verified.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TH137.52
【参考文献】
相关期刊论文 前10条
1 贺良国;刘永斌;张连生;琚斌;潘巧生;;基于压电激振的弹性模量测量方法[J];振动.测试与诊断;2014年06期
2 REN Yan;RUAN Jian;JIA Wen'ang;;Output Waveform Analysis of an Electro-hydraulic Vibrator Controlled by the Multiple Valves[J];Chinese Journal of Mechanical Engineering;2014年01期
3 邢彤;左强;杨永帅;阮健;;液压激振技术的研究进展[J];中国机械工程;2012年03期
4 陶俊勇;刘彬;陈循;;气动式振动台激振器低温失效机理研究及结构改进[J];机械工程学报;2012年02期
5 尹立一;郑书涛;沈刚;丛大成;韩俊伟;;基于改进MCS算法的道路模拟机试验系统[J];农业机械学报;2011年12期
6 李振宝;唐贞云;纪金豹;;地震模拟振动台三参量控制算法超调修正[J];振动与冲击;2010年10期
7 张海平;;纠正一些关于稳态液动力的错误认识[J];液压气动与密封;2010年09期
8 段少帅;姚平喜;张恒;;滑阀稳态液动力产生原因与补偿方法[J];流体传动与控制;2010年03期
9 唐贞云;李振宝;纪金豹;闫维明;;地震模拟振动台控制系统的发展[J];地震工程与工程振动;2009年06期
10 阮健;李胜;裴翔;俞浙青;朱发明;;2D阀控电液激振器[J];机械工程学报;2009年11期
相关博士学位论文 前4条
1 任燕;高频电液激振器的特性研究[D];浙江工业大学;2012年
2 崔剑;回转直动式电液伺服阀关键技术研究[D];浙江大学;2008年
3 关广丰;液压驱动六自由度振动试验系统控制策略研究[D];哈尔滨工业大学;2007年
4 李其朋;直动式电液伺服阀关键技术的研究[D];浙江大学;2005年
相关硕士学位论文 前3条
1 梁建康;某超限高层建筑模型模拟地震振动台试验研究[D];广州大学;2015年
2 李辉;液压锥阀结构参数与工作性能的数值分析[D];西南交通大学;2009年
3 朱光华;同步带疲劳寿命试验机的开发与研究[D];长春理工大学;2004年
,本文编号:1588754
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1588754.html