当前位置:主页 > 科技论文 > 机电工程论文 >

渐开线直齿轮接触动态特性有限元分析

发布时间:2018-03-19 09:03

  本文选题:有限元 切入点:齿轮 出处:《浙江大学》2015年硕士论文 论文类型:学位论文


【摘要】:齿轮是机械设备中动力和运动传输的关键部件,广泛应用于汽车、风电、航空、船舶等领域。目前齿轮朝着高速、重载的趋势发展,对齿轮运行的稳定性和可靠性提出了更高的要求。建立合理的齿轮模型,深入研究影响齿轮啮合传动的各个因素,对提高齿轮承载性和传动平稳性、节约设计时间和实验费用有一定的实际意义。本文建立了带轴的齿轮传动模型,基于有限元法研究了轴长、转速、负载对齿轮啮合接触冲击特性和动态接触性能的影响和轴及负载对齿轮啮合刚度的影响。本文主要研究内容如下: (1)基于赫兹接触理论推导出齿轮接触应力的计算公式,论述了解决接触问题的有限元算法及一般流程并总结求解接触动力学问题的相关技术要点,为齿轮的啮合接触分析奠定理论基础。 (2)基于直齿轮渐开线齿廓面的形成原理,实现齿轮三维参数化建模。考虑到轴变形对齿轮动态啮合性能的影响,本文建立了轴系与齿轮的联合传动有限元模型,通过几何分块对齿轮模型进行映射网格划分,优化有限元网格模型,为客观、准确的分析齿轮接触动态特性做了必要的准备。 (3)基于已建立的齿轮传动有限元模型,对齿轮的接触动态特性做了深入研究。分析出齿轮在啮合过程中接触应力的变化和分布情况,得到接触应力沿齿廓和齿面方向的分布规律。结果表明基于轴系和齿轮联合传动模型的动态接触分析可以准确、实时的模拟齿轮的动态啮合过程,为齿轮设计提供参考和依据。 (4)考虑齿轮传动系统工作情况的多变性,以轴长、转速、负载三个典型的条件因素为例,建立对比分析模型,研究各个因素对齿轮动态啮合性能的影响。结果表明:轴长对齿轮的齿面应力分布情况影响较大;转速对齿轮的啮合冲击特性影响较大,在本文模型下,当转速达到200rad/s时,从动轮转速冲击振幅急剧增大,分析结果为齿轮系统选择合理的转速区间提供指导;在一定范围内负载变化对从动轮转速振幅影响较小,但随着负载的增大,齿面接触应力显著增大。 (5)齿轮单、双齿交替啮合时,由轮齿弹性变形引起的刚度激励使齿轮产生振动和噪声。因此本文研究了齿轮啮合过程中啮合刚度的变化规律,分别建立理想齿轮传动模型和轴系与齿轮联合传动模型,得到啮合周期内齿轮啮合刚度的变化曲线。结果表明:轴系的加入降低齿轮传动系统的啮合刚度;随负载增加,齿轮啮合刚度小幅增加;负载对带轴齿轮啮合刚度的影响要小于对理想齿轮啮合刚度的影响。
[Abstract]:Gear is the key component of power and motion transmission in mechanical equipment. It is widely used in automobile, wind power, aviation, ship and so on. The higher requirements for the stability and reliability of gear operation are put forward. To establish a reasonable gear model and to deeply study the factors affecting gear meshing transmission, it is necessary to improve the bearing capacity and drive smoothness of gear. It is of practical significance to save design time and experiment cost. In this paper, the gear transmission model with shaft is established, and the shaft length and speed are studied based on finite element method. The influence of load on gear meshing contact impact characteristics and dynamic contact performance, and the influence of shaft and load on gear meshing stiffness. The main contents of this paper are as follows:. 1) based on Hertz contact theory, the formula of gear contact stress is derived, the finite element algorithm and general flow chart for solving contact problem are discussed, and the relevant technical points for solving contact dynamics problem are summarized. It lays a theoretical foundation for the meshing contact analysis of gears. Based on the forming principle of involute tooth profile of spur gear, the three-dimensional parametric modeling of gear is realized. Considering the influence of shaft deformation on the dynamic meshing performance of gear, a finite element model of joint transmission between shaft system and gear is established in this paper. The mapping mesh of gear model is divided into geometric blocks and the finite element mesh model is optimized. The necessary preparation is made for the objective and accurate analysis of gear contact dynamic characteristics. Based on the established finite element model of gear transmission, the contact dynamic characteristics of gear are studied in depth, and the change and distribution of contact stress during meshing are analyzed. The distribution of contact stress along the tooth profile and tooth surface is obtained. The results show that the dynamic contact analysis based on the shafting and gear joint transmission model can accurately simulate the dynamic meshing process of the gear in real time and provide a reference and basis for gear design. Considering the variability of gear transmission system, taking three typical factors such as shaft length, rotational speed and load as examples, a comparative analysis model is established. The influence of various factors on the dynamic meshing performance of gear is studied. The results show that the axial length has a great influence on the stress distribution of gear tooth surface, and the rotational speed has a great influence on the meshing impact characteristic of gear. In this model, when the rotational speed reaches 200radr / s, The result of analysis provides guidance for the gear system to select a reasonable speed range, and the load change has little effect on the amplitude of the rotational speed of the driven wheel in a certain range, but with the increase of the load, The contact stress of tooth surface increases significantly. 5) the stiffness excitation caused by elastic deformation of gear teeth makes the gear produce vibration and noise when the gear is engaged alternately with single or double teeth. Therefore, the variation law of the gear meshing stiffness during the meshing process is studied in this paper. The ideal gear transmission model and the joint transmission model of shafting and gear are established respectively, and the change curves of gear meshing stiffness are obtained during the meshing period. The results show that the meshing stiffness of gear transmission system decreases with the addition of shafting, and increases with load. The meshing stiffness of gear increases slightly and the influence of load on meshing stiffness of gear with shaft is smaller than that on ideal gear.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TH132.413

【相似文献】

相关期刊论文 前10条

1 孙贵清;杨桂华;;齿轮变位修复技术的应用研究[J];机械制造与自动化;2007年03期

2 钱学毅;吴祯芸;吴双;;销齿副齿轮弯曲动应力有限元仿真分析[J];黑龙江工程学院学报(自然科学版);2009年03期

3 松杉;齿轮双面啮合检查结果中测量齿轮误差的消除[J];工具技术;1976年02期

4 ;半自动齿轮周节仪[J];机床;1977年01期

5 许祥泰;用新编齿轮表及序号法确定机床变速箱中齿轮齿数[J];机床;1978年06期

6 黎冠中;戚文星;;日本防振橡胶弹性牵引齿轮的研制[J];国外内燃机车;1981年11期

7 王启义;吴玉国;周喜忠;;不同模数齿轮齿数的计算机辅助计算[J];辽宁机械;1985年03期

8 张锁平;用大压力角滚刀滚切少齿数齿轮[J];工具技术;1988年11期

9 ;高级工第一层次人员试题 齿轮工工艺学[J];机械工人.冷加工;1989年02期

10 汤和;赵振英;汪元辉;朱梦周;;理想齿轮噪声与振动谱的计算机仿真[J];齿轮;1990年04期

相关会议论文 前2条

1 江山;曾正茂;张弛;关勇;;F煤磨机开式齿轮损伤与润滑分析[A];全国火电大机组(300MW级)竞赛第36届年会论文集(上册)[C];2007年

2 刘红枫;;大齿轮的齿形修复[A];第九届沈阳科学学术年会论文集(信息科学与工程技术分册)[C];2012年

相关重要报纸文章 前1条

1 《金周刊》记者 朱杰;加油站作弊手段忒诡 计量器令其现形[N];中国经营报;2001年

相关硕士学位论文 前10条

1 朱均华;微齿轮真空铸型的数值模拟与实验研究[D];江苏大学;2009年

2 周长明;纯滚动接触齿轮的测量理论[D];南京林业大学;2010年

3 左瑞光;齿轮式多点泵的特性分析与结构设计[D];大连交通大学;2007年

4 马义超;基于近似模型的机车齿轮的可靠性优化设计[D];湖南大学;2012年

5 戴进;齿轮齿根动应力分析及其结构优化设计[D];中南大学;2008年

6 郑泊芝;齿轮式气动马达的建模与性能优化[D];北京交通大学;2008年

7 姬存强;正交面齿轮的啮合仿真与插齿加工[D];河南科技大学;2009年

8 孙伟;基于啮合振动信号的齿轮寿命预测[D];南昌航空大学;2012年

9 刘艳平;直齿—面齿轮加载接触分析及弯曲应力和接触应力计算方法研究[D];中南大学;2012年

10 杜宇明;井下少齿差齿轮倒扣装置的设计计算及受力分析[D];北京化工大学;2012年



本文编号:1633579

资料下载
论文发表

本文链接:https://www.wllwen.com/jixiegongchenglunwen/1633579.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户eebd3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com