当前位置:主页 > 科技论文 > 机电工程论文 >

基于差动轮系的机液复合无级变速器的研究

发布时间:2018-04-14 05:21

  本文选题:工程车辆 + 差动行星轮系 ; 参考:《太原理工大学》2017年硕士论文


【摘要】:拖拉机、起重机、装载机以及重型运输车等被广泛应用于工程领域中的车辆,是建筑工程的主干力量,在工程建设和经济社会发展中具有举足轻重的作用,然而在全球能源和环境问题日趋严峻,燃料电池汽车和纯电动汽车续航能力有限,不适用于工程车辆上的情况下,机液复合动力车辆的出现为目前正处于困境中的人们提供了一个解决问题的新思路。传动系统是决定机液复合形式车辆经济性能和动力性能的最关键部分之一,而变速器又影响着车辆动力传动系统的性能,是车辆传动系统的核心部分。本文提出了一种基于差动轮系的机液复合型双动力无级变速器,它将是差动轮系机构的一种特殊应用方式,其承载能力特别强、工作效率高以及无级调速范围广的优点使其特别适合在工程车辆上使用。本无级变速器的使用可以使车辆的动力性和经济性得到极大提高。论文简述了无级变速器的分类以及每一类无级变速器的优缺点和国内外的研究现状,阐明了在工程车辆上采用这种机液复合无级变速器具有很大的价值和意义。此外,本文还对机液复合无级变速传动系统的特性、原理以及各种传动方案的特点进行了分析和比较,为机液复合无级变速系统的设计和在工程车辆上的应用提供了理论支持。以上述理论分析为基础,借助SOLIDERWORKS软件平台,建立了无级变速器行星轮系机构的三维模型,并借助ADAMS软件平台对其进行了仿真分析;而后又针对无级变速器行星轮系部分,进行了可靠性建模,分析了对可靠性具有重大影响的因素,并以东方红拖拉机为载体,完成了机液复合无级变速器动力参数的匹配。在此基础上,又运用遗传算法对无级变速器的参数进行了优化设计。最后还对无级变速器和整车系统进行了建模,并借助SIMULINK软件对发动机效率和转速、车速、变量泵控制斜盘摆角以及无级变速的效率进行了仿真研究。仿真结果表明:本无级变速器承载能力强、传动效率比较高、动力性和经济性较好,能很好的应用于工程车辆上。通过本论文的分析能够得出如下结论,首先,本文所述的机液复合无级变速器比传统的无级变速器具有更好的动力性和经济性;其次,参数优化设计可以明显降低本无级变速器的重量并提高其可靠性,使其特性更加突出;最后,通过对动力参数的合理匹配,并结合本机液复合无级变速器的使用,在满足工程车辆动力性的前提下,的确能够让发动机和无级变速器保持较高的工作效率,实现节能环保的目的。
[Abstract]:Tractors, cranes, loaders and heavy-duty transport vehicles are widely used in the field of engineering. They are the backbone of construction projects and play an important role in engineering construction and economic and social development.However, when the global energy and environmental problems are becoming increasingly serious, fuel cell vehicles and pure electric vehicles have limited ability to live, which is not suitable for engineering vehicles.The emergence of mechanical-hydraulic compound power vehicle provides a new way to solve the problem for people who are in difficult position at present.The transmission system is one of the most important parts that determine the economic and dynamic performance of the vehicle in the combination of mechanical and hydraulic system, and the transmission affects the performance of the vehicle power transmission system and is the core part of the vehicle transmission system.In this paper, a kind of mechanical-hydraulic compound double-power stepless transmission based on differential gear train is proposed. It will be a special application mode of differential gear train mechanism, and its bearing capacity is especially strong.The advantages of high efficiency and wide range of stepless speed regulation make it especially suitable for engineering vehicles.The use of the CVT can greatly improve the power and economy of the vehicle.In this paper, the classification of CVT, the advantages and disadvantages of each kind of CVT and the research status at home and abroad are briefly introduced, and the great value and significance of using this kind of CVT in engineering vehicles are expounded.In addition, this paper also analyzes and compares the characteristics, principles and various transmission schemes of the mechanical-hydraulic compound stepless transmission system, which provides theoretical support for the design of the mechanical-hydraulic compound stepless transmission system and its application in engineering vehicles.Based on the above theoretical analysis and with the help of SOLIDERWORKS software platform, the three-dimensional model of the planetary gear train mechanism of the stepless transmission is established, and the simulation analysis is carried out with the help of the ADAMS software platform, and then the planetary gear train part of the stepless transmission is analyzed.The reliability modeling is carried out and the factors which have great influence on the reliability are analyzed. The matching of the dynamic parameters of the hydraulic composite CVT is completed with Dongfanghong tractor as the carrier.On this basis, genetic algorithm is used to optimize the parameters of CVT.Finally, the stepless transmission and the whole vehicle system are modeled, and the efficiency of engine efficiency and speed, speed, swing angle controlled by variable pump and stepless speed are simulated by SIMULINK software.The simulation results show that the stepless transmission has strong bearing capacity, high transmission efficiency, good power and economy, and can be applied to engineering vehicles.Through the analysis of this paper, the following conclusions can be drawn: firstly, the mechanical-hydraulic compound stepless transmission has better power performance and economy than the traditional CVT.Parameter optimization design can obviously reduce the weight of the CVT and improve its reliability, and make its characteristics more prominent. Finally, through the reasonable matching of the dynamic parameters and the use of the hydraulic compound CVT,On the premise of satisfying the dynamic performance of engineering vehicles, the engine and CVT can be kept high working efficiency and the purpose of energy saving and environmental protection can be realized.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH132.46

【参考文献】

相关期刊论文 前10条

1 陈晓平;陈文华;许家清;胡如夫;;串联结构产品可靠性建模与统计分析[J];中国机械工程;2015年12期

2 赵又群;李佳;;Plug-in混合动力汽车动力系统参数匹配[J];应用基础与工程科学学报;2011年03期

3 王德伦;张石静;许南绍;李鑫;;电动汽车行星齿轮式无级变速器建模与仿真[J];重庆理工大学学报(自然科学版);2010年11期

4 徐立友;李金辉;张彦勇;;液压机械无级变速传动在拖拉机上的应用分析[J];农机化研究;2009年11期

5 秦大同;游国平;胡建军;;新型功率分流式混合动力传动系统工作模式分析与参数设计[J];机械工程学报;2009年02期

6 武小兰;王军平;曹秉刚;边延胜;;充电式混合动力电动汽车动力系统的参数匹配[J];汽车工程;2008年12期

7 刘永刚;秦大同;叶明;;ISG型中度混合动力汽车动力驱动系统设计及性能仿真[J];中国公路学报;2008年05期

8 胡青春;段福海;吴上生;;封闭行星齿轮传动系统的可靠性研究[J];中国机械工程;2007年02期

9 徐立友;周志立;张明柱;;基于MATLAB的柴油机性能试验数据的处理[J];河南科技大学学报(自然科学版);2006年04期

10 姬芬竹;高峰;吴志新;;电动汽车传动系参数设计及动力性仿真[J];北京航空航天大学学报;2006年01期

相关博士学位论文 前2条

1 曹成龙;金属带式无级变速器夹紧力及速比控制技术研究[D];湖南大学;2013年

2 徐立友;拖拉机液压机械无级变速器特性研究[D];西安理工大学;2007年

相关硕士学位论文 前7条

1 张石静;基于差速模式的电动汽车行星齿轮式无级变速器的研究[D];重庆理工大学;2013年

2 王宪忠;基于UG参数化建模的2K-H行星减速器优化设计及有限元分析[D];太原理工大学;2013年

3 史俊龙;非道路车辆液压机械无级变速器设计及变量泵控制性能研究[D];南京农业大学;2012年

4 祝昌洪;液压机械无级变速器的设计与仿真研究[D];西南交通大学;2011年

5 刘天豪;机液复合无级变速器的控制系统研究[D];西南交通大学;2011年

6 龚慧军;混合动力汽车电机控制和动力系统参数匹配研究[D];湖南大学;2009年

7 丁晓明;液压机械无级变速器特性分析与仿真研究[D];吉林大学;2007年



本文编号:1747888

资料下载
论文发表

本文链接:https://www.wllwen.com/jixiegongchenglunwen/1747888.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a3521***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com