多股螺旋弹簧响应特性的理论研究与实践
本文选题:多股螺旋弹簧 + 静态响应 ; 参考:《重庆大学》2015年博士论文
【摘要】:多股螺旋弹簧(简称多股簧)是用由多股、多层弹簧钢丝拧成的钢索卷绕而成的圆柱螺旋弹簧,与普通单股弹簧相比,多股簧具有强度高、寿命长、可靠性高、抗油污、减振抗冲击性能好等优点,是自动武器、重型机械以及各种高端装备中的重要复位基础件。多股簧制造困难,限制了其推广应用,过去仅仅在极少数军工产品中使用。近年来,多股簧高精度数控加工技术已逐渐成熟,多股簧制造问题已基本解决,多股簧的优点也逐渐被广泛了解,许多企业都希望在其产品中用多股簧替换原来的单股弹簧以达到改进产品性能的目的。然而,现阶段针对多股簧的理论研究主要集中在多股簧的制造装备和几何模型方面,而多股簧的响应模型及多股簧系统的响应分析理论研究很不充分,相关企业在使用多股簧时没有理论指导,难以充分发挥多股簧的优点。本文以解决多股簧工程应用中的关键问题为核心目标,在多股簧的制造、静态响应建模、动态响应建模以及多股簧系统的动态响应分析等方面开展了以下研究工作:①首先,针对多股簧卷绕加工的关键参数——钢丝捻距的选取尚无理论支持的问题,研究了最优钢丝捻距的的选取准则,提出了最优钢丝捻距的计算方法,解决了制约多股簧新产品快速开发的关键问题;②针对目前多股簧静态响应模型尚不完善,不能很好的描述多股簧非线性刚度,导致设计基于多股簧的复位机构时缺乏理论指导的问题,考虑多股簧钢索受载变形时同层各股钢丝接触状态变化的影响,提出了多股簧静态响应的“两状态”模型,该模型可反映多股簧的非线性刚度,提高了多股簧静态响应分析的精度,为基于多股簧的复位装置的设计提供了理论支持;③针对目前尚无能够同时准确描述多股簧非线性刚度和滞迟阻尼的高精度多股簧动态响应模型,导致无法分析股簧系统动态响应的问题,通过对大量实验数据的分析,归纳了多股簧动态响应曲线的基本性质,在此基础上提出了一种多股簧动态响应模型,该模型是一种修正的归一化Bouc-Wen模型,具有精度高、参数易识别的优点,为多股簧动态系统的设计、分析奠定了理论基础;④针对现有参数识别方法多基于非线性迭代算法,需要人为给定合适的初始猜测解,在工程应用时常因收敛性问题导致不能正确识别多股簧动态响应模型参数的问题,结合多股簧动态响应模型的自身特点,提出一种无需迭代的两步识别方法,将这一方法与现有的非线性迭代法相结合,提出了一种无须人为给定初始猜测解的、精度更高的三步参数识别方法,这两种方法解决了多股簧动态响应模型参数识别困难的问题,为后续响应分析研究提供了条件;⑤针对工程中重点关注的多股簧系统稳态谐波响应问题,以非线性系统响应分析的谐波平衡法为理论基础,首先推导了适用于弱非线性多股簧系统稳态谐波响应的单谐波解,而后引入非线性迭代算法,与谐波平衡法结合,将非线性微分方程的求解问题转化为最优化问题,提出了可分析强非线性多股簧系统的迭代多谐波平衡分析方法,实践表明,该方法是多股簧系统谐响应分析的一种有效手段;⑥针对工程中大量实际多股簧系统均呈现近似线性系统的响应行为的现象以及多股簧系统的随机响应问题,研究了多股簧系统动态响应的等效线性化和统计线性化方法。等效线性化方法以本文研究的归一化Bouc-Wen模型能量损耗分析方法为基础,适用于多股簧系统的稳态谐波响应分析;统计线性化方法适用于多股簧系统的随机响应分析,该方法可处理激励功率谱密度函数为理分式的多股簧系统的平稳随机响应问题。线性化分析方法具有分析速度快的优点,可在多股簧系统初步设计时作为一种高效但精度略低的方法使用。
[Abstract]:Multi strand spring (short spring) is a cylindrical spiral spring made of steel cables twisted by multiple strands and multi layer spring steel wires. Compared with the ordinary single spring, multiple springs have the advantages of high strength, long life, high reliability, anti oil pollution, good shock resistance and shock resistance, and are the weight of automatic weapons, heavy machinery and all kinds of high-end equipment. In order to reset the base parts. Multiple spring manufacturing is difficult to restrict its application. In the past, it was used only in a few military products. In recent years, the multi spring high precision CNC machining technology has gradually matured, the problem of multi spring manufacturing has been basically solved, and the advantages of multi spring spring have gradually been widely understood, and many enterprises want to use multiple shares in their products. The spring replaces the original single spring for the purpose of improving the performance of the product. However, at this stage, the theoretical research on the multiple spring is mainly focused on the manufacturing equipment and geometric model of the multi spring spring, while the response model of the multiple spring and the response analysis theory of the multiple spring system are not fully studied. Theoretical guidance is difficult to give full play to the advantages of multiple springs. This paper aims at solving the key problems in the application of multiple spring engineering. The following research work has been carried out in the manufacturing of multiple spring springs, modeling of static response, dynamic response modeling, and dynamic response analysis of multiple spring systems. The key parameter, the selection of the wire twist distance, has not yet supported the theoretical support. The selection criteria of the optimal wire distance are studied, the calculation method of the optimal wire twist distance is put forward, and the key problem that restricts the rapid development of the multi spring new product is solved. Secondly, the multi spring static response model is not perfect and can not describe the multiple shares well. The spring nonlinear stiffness leads to the lack of theoretical guidance in the design of a reset mechanism based on multiple springs. Considering the influence of the changes in the contact state of the steel wire in the same layer when the multiple spring steel cables are loaded, the "two state" model of the multi spring static response is proposed. The model can reflect the nonlinear stiffness of the multiple spring and increase the static state of the multiple spring. The accuracy of the response analysis provides a theoretical support for the design of a reset device based on multiple springs. (3) there is not yet a high precision multi spring dynamic response model that can accurately describe the nonlinear stiffness and hysteresis damping of multiple springs at the same time, which leads to the failure to analyze the dynamic response of the spring system, and through the analysis of a large number of experimental data, The basic properties of multi spring dynamic response curve are summed up. On this basis, a dynamic response model of multiple springs is proposed. This model is a modified normalized Bouc-Wen model, which has the advantages of high precision and easy to identify parameters. It lays a theoretical foundation for the design of multi spring dynamic system and analyses the existing parameter identification method. Based on the nonlinear iterative algorithm, it is necessary to give the proper initial conjecture and the problem that the parameters of the dynamic response model can not be identified correctly in the engineering application because of the convergence problem. A two step recognition method without iteration is proposed, which combines the characteristics of the multi spring dynamic response model. In combination with the nonlinear iterative method, a three step parameter identification method with higher precision is proposed without human given initial guess solution. These two methods solve the difficult problem of multi spring dynamic response model parameter identification, and provide conditions for the follow-up response analysis. 5. The harmonic response problem is based on the harmonic balance method of nonlinear system response analysis. First, the single harmonic solution for the steady harmonic response of the weak nonlinear multi ply spring system is derived. Then the nonlinear iterative algorithm is introduced and the solution of the nonlinear differential equation is transformed into the optimization problem by combining the nonlinear iterative algorithm with the harmonic balance method. The iterative multi harmonic equilibrium analysis method for the analysis of strong nonlinear multiple spring systems is presented. The practice shows that this method is an effective method for the harmonic response analysis of multiple spring systems. The equivalent linearization and statistical linearization method for dynamic response of multiple spring systems is used. The equivalent linearization method is based on the normalized Bouc-Wen model energy loss analysis method studied in this paper. It is suitable for the steady harmonic response analysis of multiple spring systems, and the statistical linearization method is suitable for the random response analysis of multiple spring systems. This method is applied to the analysis of the random response of multiple spring systems. The linear analysis method has the advantage of fast analysis, which can be used as a highly efficient but slightly lower precision method for the preliminary design of multiple spring systems.
【学位授予单位】:重庆大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TH135
【相似文献】
相关期刊论文 前10条
1 闵建军;王时龙;;多股螺旋弹簧动态计算分析[J];机械工程学报;2007年03期
2 王时龙;任伟军;周杰;闵建军;李川;;多股螺旋弹簧的空间曲线模型研究[J];中国机械工程;2007年11期
3 萧红;王时龙;周杰;雷松;;多股螺旋弹簧建模方法研究[J];系统仿真学报;2010年05期
4 闵建军;王时龙;;多股螺旋弹簧的动态设计方法[J];中国机械工程;2007年08期
5 王时龙;周杰;康玲;;多股螺旋弹簧绕制过程中的动态张力[J];机械工程学报;2008年06期
6 王时龙;萧红;周杰;雷松;;多股螺旋弹簧的微分几何研究[J];中国机械工程;2009年17期
7 田志锋;王时龙;周杰;雷松;;多股螺旋弹簧的设计与工艺研究[J];重庆理工大学学报(自然科学版);2010年08期
8 石怀荣;张辉;李大胜;胡娟;;玉雕机刀具系统多股螺旋弹簧结构设计[J];淮阴工学院学报;2013年01期
9 于道文;多股螺旋弹簧的动应力及其有效寿命[J];南京理工大学学报;1994年03期
10 洪茂成;王时龙;任伟军;闵建军;周杰;;多股螺旋弹簧三维接触摩擦研究[J];机械设计与制造;2008年01期
相关会议论文 前1条
1 王书文;;螺旋型螺旋体的CAD造型[A];苏州市自然科学优秀学术论文汇编(2008-2009)[C];2010年
相关博士学位论文 前2条
1 萧红;多股螺旋弹簧绕制成形的若干关键问题研究[D];重庆大学;2010年
2 赵昱;多股螺旋弹簧响应特性的理论研究与实践[D];重庆大学;2015年
相关硕士学位论文 前3条
1 田志锋;特种多股螺旋弹簧检测与试验研究[D];重庆大学;2010年
2 王春梅;弧形多股螺旋弹簧的关键技术研究[D];重庆大学;2015年
3 Antoine SAGNA(安东尼);多股螺旋弹簧运动参数的检测装置及测量技术的研究[D];重庆大学;2011年
,本文编号:1800533
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1800533.html