活塞式气动马达与配气系统优化匹配研究
本文选题:气动马达 + 配气系统 ; 参考:《内蒙古工业大学》2017年硕士论文
【摘要】:搭载活塞式气动马达的绞车是能源开采和生产制造领域不可替代的输送装置,其工作效率和设备安全性对于工业生产有着重要意义。目前新型配气系统在配气效率上有了很大提升,提高了气动马达做功功率。但目前马达与配气系统依然存在诸多问题,主气道气体能量损耗较大。新型配气系统内部气体流动状态无法准确得到,影响了辅助气动回路的设计,导致辅助气控系统的可靠性较差。因此,需要深入分析配气装置和气缸内气体流动特性,优化匹配马达和配气装置,提高整机工作效率。论文针对XJFH-5×135型活塞式气动马达及其新型配气系统,以马达动力性和经济性为目标函数,利用CFD数值模拟开展马达与配气装置的优化匹配研究。首先,分析了新型配气系统的组成结构以及气动控制原理,研究影响气动马达性能的设计参数,通过理论分析找到影响马达缸内压力的因素。其次,应用滑移网格和动网格技术模拟分配阀芯旋转运动和活塞往复运动,在模拟活塞运动过程中,同时应用了In-cylinder模型和Fluent函数自定义功能,实现了分配阀与五个活塞同步动态模拟分析。通过Fluent软件针对某种工况下的整机模型进行计算,并利用现有气动马达及配气系统性能测试平台对马达与配气系统的仿真模型进行了有效性验证,实验结果证明了仿真的可靠性。最后,针对不同的关键结构参数建立了多种仿真模型,对各模型对应的气体压力能损失情况和缸内气压值进行了分析和对比,确定了马达及配气系统结构优化与匹配方案。并且针对优化前后的整机性能进行仿真对比分析,优化匹配之后马达动力性和经济性有了明显提高。通过数值模拟方法对马达及配气系统的优化匹配进行研究,依据仿真得到的内部气道气动特性,对造成能量损失较大的关键结构进行优化,通过气体流动特性和能量传递对分配阀与马达进行匹配研究。研究得到的内部气道压力值对于辅助气控系统的优化设计具有重要指导意义。
[Abstract]:The winch with piston pneumatic motor is an irreplaceable transport device in the field of energy exploitation and production and manufacture. Its working efficiency and equipment safety are of great significance to industrial production. At present, the new valve distribution system has greatly improved the gas distribution efficiency and improved the work power of the pneumatic motor. However, there are still many problems in motor and valve system. The gas flow state in the new gas distribution system can not be accurately obtained, which affects the design of the auxiliary pneumatic loop and leads to the poor reliability of the auxiliary gas control system. Therefore, it is necessary to analyze the gas flow characteristics of the valve distribution device and cylinder, optimize the matching motor and the valve distribution device, and improve the working efficiency of the whole machine. Aiming at the XJFH-5 脳 135 piston pneumatic motor and its new valve distribution system, the optimization and matching of the motor and the valve distribution device are carried out by using the CFD numerical simulation, taking the motor's power and economy as the objective function. Firstly, the structure of the new valve system and the pneumatic control principle are analyzed, and the design parameters that affect the performance of the pneumatic motor are studied. The factors affecting the pressure in the cylinder of the motor are found through theoretical analysis. Secondly, the sliding mesh and moving grid are used to simulate the rotating movement of the valve core and the reciprocating movement of the piston. In the process of simulating the piston movement, the In-cylinder model and the Fluent function are used to customize the function. The synchronous dynamic simulation analysis between the distribution valve and the five pistons is realized. The simulation model of the motor and the valve distribution system is validated by using the existing pneumatic motor and valve distribution system performance test platform through the calculation of the whole machine model under a certain working condition by Fluent software, and the validity of the simulation model of the motor and the valve distribution system is verified. The experimental results show the reliability of the simulation. Finally, a variety of simulation models are established for different key structural parameters. The loss of gas pressure energy and the value of gas pressure in cylinder are analyzed and compared, and the optimization and matching scheme of the structure of motor and valve distribution system are determined. The performance of the motor before and after the optimization is compared and analyzed, and the motor performance and economy are improved obviously after the optimization and matching. The optimization and matching of motor and valve system are studied by numerical simulation method. According to the aerodynamic characteristics of internal air passage, the key structures which cause large energy loss are optimized. The matching between distribution valve and motor was studied by gas flow characteristics and energy transfer. The internal airway pressure obtained from the study is of great significance for the optimization design of the auxiliary gas control system.
【学位授予单位】:内蒙古工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH138.51
【参考文献】
相关期刊论文 前10条
1 黄群慧;李晓华;;中国工业发展“十二五”评估及“十三五”战略[J];中国工业经济;2015年09期
2 张艳锋;郭志平;张超;郝健美;刘海龙;;径向活塞式气动马达的运动学分析[J];矿山机械;2014年08期
3 曾鸣;王葆葆;王晓华;王文明;张仕民;;基于MATLAB软件的气动绞车动力匹配优化[J];石油矿场机械;2014年04期
4 曾鸣;王葆葆;张仕民;王文明;;基于MATLAB的气动马达万有特性曲线绘制方法研究[J];石油矿场机械;2013年12期
5 虞启辉;石岩;宋荣志;蔡茂林;;气动发动机输出扭矩无因次分析[J];北京航空航天大学学报;2013年09期
6 卢彦铮;郭志平;王敬新;王燕飞;李冠孚;郭炜;;一种载人绞车气动系统的设计[J];液压与气动;2013年07期
7 王方利;张玉大;;防爆技术在气动葫芦产品上的应用[J];防爆电机;2013年04期
8 方奕栋;李道飞;杨阳;俞小莉;;气动发动机进气过程流动损失分析[J];内燃机工程;2013年03期
9 许启跃;蔡茂林;虞启辉;付向恒;;气动发动机多参数多目标寻优方法[J];北京航空航天大学学报;2013年06期
10 王桂玲;;基于我国煤炭经济发展战略规划的途径分析[J];现代商业;2012年29期
相关博士学位论文 前2条
1 田时中;我国煤炭供需安全评价及预测预警研究[D];中国地质大学;2013年
2 戴相富;石油系列绞车模块化设计与仿真研究[D];中国石油大学;2009年
相关硕士学位论文 前4条
1 袁世鹏;矿用气动绞车的设计与研究[D];中国矿业大学;2015年
2 张艳锋;气动马达配气系统的研究[D];内蒙古工业大学;2015年
3 梁浩;气动发动机配气系统的气动力特性研究[D];中国矿业大学;2014年
4 丁卫华;气动汽车动力系统能效分析[D];浙江大学;2006年
,本文编号:1801947
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1801947.html