柱塞式静液压变矩器研究
本文选题:变矩器 + 柱塞式耦合器 ; 参考:《太原科技大学》2017年硕士论文
【摘要】:节能、绿色、环保已逐渐成为当代社会的发展潮流,特别是2016年冬季全国大范围内受到的雾霾严重影响,使人们意识到节能环保迫在眉睫。工程机械作为国民经济建设中必不可少的使用工具,对环境造成的危害不容小觑,因此,开发高效节能的传动方式作为实现工程机械节能减排的一种有效途径,已经成为科研人员的一个主要研究方向。本文在基于柱塞式静液压耦合器的基础上提出了柱塞式静液压变矩器。该变矩器由斜盘旋转柱塞泵和恒压变量马达组成,泵和马达共用一个转子,动力输出轴与转子相连。当外负载力较低,只由柱塞泵传递动力,当外负载增大时,由柱塞泵和变量马达共同作用来传递动力。柱塞式静液压变矩器与传统液力变矩器相比具有高效范围宽、易匹配等优点,与静液压传动相比具有功率重量比更大、传动效率更高等优点。为了达到柱塞式静液压变矩器结构紧凑的目的并符合设计要求,本文采用理论计算与计算机仿真计算相结合的设计方法。首先,对柱塞变矩器核心部件进行运动学和动力学理论分析,推导出了柱塞速度和加速度与马达调节参数之间的关系式,用MATLAB软件分别分析了泵柱塞和马达柱塞与柱塞孔间的作用力,并画出其随转子转动的变化趋势曲线,发现泵柱塞和马达柱塞都是柱塞前端受力比后端受力恶劣,并且当柱塞处于下死点时柱塞与缸孔间的作用力达到最大;在柱塞式静液压变矩器分别处于耦合状态和变矩状态时,对转子进行受力分析,推导出了集流盘开口偏移量与轴向轴承半径之间的关系式和径向轴承安装位置。然后,对泵和马达的柱塞副和滑靴副进行PV值核算,并用MATLAB软件校核了柱塞强度,研究发现,柱塞磨损最恶劣的位置并不是发生在上下死点位置处,而是转过一定的角度,柱塞前端更容易磨损;在确定马达采用端面配流和柱塞泵采用阀配流方式后,根据设计公式初步确定出配流盘内外密封带、错配角、三角槽底棱角等参数和配流阀的锥角、通径和弹簧参数。最后,为了验证柱塞式静液压变矩器原理的可行性,运用AMEsim仿真软件搭建阀配流斜盘旋转柱塞泵模型和端面配流柱塞马达模型,并对其进行仿真,得出泵和马达柱塞受力曲线;在确定了各零部件尺寸后,用专业三维建模软件Solidworks搭建柱塞式静液压变矩器几何模型,然后导入ADAMS软件通过施加相关约束建立其动力学模型,在相同输入转速不同斜盘倾角下对该变矩器进行仿真分析,得到柱塞的运动曲线和在不同斜盘倾角下的输入、输出扭矩特性曲线,结果表明该模型具有扭矩放大功能,验证了原理的可行性。柱塞式静液压变矩器作为新型动力传递元件,符合于液压技术的发展趋势,对其进行进一步改进可用于混合动力,相信该新型液压元件有着良好的发展前景。
[Abstract]:Energy saving, green and environmental protection have gradually become the trend of development in contemporary society, especially the severe impact of haze on the whole country in the winter of 2016, which makes people realize that energy saving and environmental protection is imminent. Construction machinery, as an indispensable tool in national economic construction, can not be underestimated because of its harm to the environment. Therefore, the development of efficient and energy-saving transmission mode is an effective way to realize energy saving and emission reduction of construction machinery. Has become a major research direction for researchers. This paper presents a plunger hydrostatic torque converter based on plunger hydrostatic coupler. The torque converter consists of a rotary piston pump and a constant pressure variable motor. The pump and motor share a rotor and the power output shaft is connected to the rotor. When the external load is low, only the piston pump transfers the power. When the external load increases, the piston pump and the variable motor act together to transfer the power. Compared with the traditional hydraulic torque converter, the plunger hydrostatic torque converter has the advantages of wide range of efficiency, easy matching and so on. Compared with hydrostatic transmission, the plunger hydrostatic torque converter has the advantages of higher power / weight ratio and higher transmission efficiency. In order to achieve the purpose of compact structure of plunger hydrostatic torque converter and meet the design requirements, the design method of combining theoretical calculation with computer simulation calculation is adopted in this paper. Firstly, the kinematics and dynamics of the core components of the plunger torque converter are analyzed, and the relationship between the plunger speed and acceleration and the motor regulation parameters is derived. The force between pump plunger and motor plunger and plunger hole is analyzed by MATLAB software, and the changing trend curve with rotor rotation is drawn. It is found that both pump plunger and motor plunger have worse force at the front end than at back end. And when the plunger is at the lower dead point, the force between the plunger and the cylinder hole reaches the maximum; when the plunger hydrostatic torque converter is in the coupling state and the torque state, the force on the rotor is analyzed. The relationship between the radial bearing radius and the opening offset of the collector disc and the position of the radial bearing are derived. Then, the PV value of plunger pair and slipper pair of pump and motor was calculated, and the strength of plunger was checked with MATLAB software. The research found that the worst position of plunger wear occurred not at the dead point of the top and bottom, but at a certain angle. The front end of the plunger is easier to wear out. After determining that the motor adopts the end flow distribution mode and the piston pump adopts the valve distribution mode, according to the design formula, the parameters such as the inner and outer sealing belt, the mismatch angle, the bottom prism angle of the triangle groove and the conical angle of the flow distribution valve are preliminarily determined according to the design formula. Diameter and spring parameters. Finally, in order to verify the feasibility of the principle of the plunger hydrostatic torque converter, the AMEsim simulation software is used to build the model of the rotary piston pump with valve and the model of the end face distribution plunger motor, and the force curve of the pump and motor plunger is obtained by simulation. After determining the dimensions of the components, the geometric model of the plunger hydrostatic torque converter is built with the professional 3D modeling software Solidworks, and then the dynamic model of the plunger hydrostatic torque converter is established by introducing the ADAMS software through imposing the relevant constraints. The torque converter is simulated and analyzed under the same input speed and different inclination angle of the skew disk. The kinematic curve of the plunger and the characteristic curve of the input and output torque under the different inclination angle of the plunger are obtained. The results show that the model has the function of torque amplification. The feasibility of the principle is verified. As a new type of power transfer element, plunger hydrostatic torque converter is in line with the development trend of hydraulic technology. It can be further improved for hybrid power. It is believed that the new hydraulic element has a good development prospect.
【学位授予单位】:太原科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH137.332
【参考文献】
相关期刊论文 前10条
1 程旭华;贾跃虎;安高成;丁小宁;刘薇;;新型叶片式静液压耦合器[J];液压气动与密封;2015年11期
2 刘景彬;纪宇龙;安高成;叶雯雯;;新型柱塞式静液压偶合器[J];煤矿机械;2015年10期
3 魏巍;刘城;闫清东;;柔性扁平循环圆液力元件叶栅系统设计方法[J];农业机械学报;2011年04期
4 刘春宝;朱喜林;马文星;;轿车液力变矩器扁平率研究[J];农业机械学报;2010年10期
5 吴光强;陈曙光;王欢;;液力变矩器叶栅角度参数优化及算法[J];同济大学学报(自然科学版);2009年06期
6 魏巍;闫清东;;液力变矩器泵轮叶片优化设计研究[J];系统仿真学报;2008年23期
7 孟亚,刘长生,戴奇明,李胜建;工程机械液力变矩器传动损失的研究[J];机电产品开发与创新;2005年03期
8 安高成,吕翠萍,王明亮,王平,王明智;柱塞泵配流副三角槽的分析设计[J];太原重型机械学院学报;2004年04期
9 严鹏,吴光强;液力变矩器性能分析[J];同济大学学报(自然科学版);2004年11期
10 魏巍,张利霞,闫清东;液力变矩器流场计算可视化及其OpenGL实现[J];机床与液压;2004年10期
相关博士学位论文 前3条
1 张斌;轴向柱塞泵的虚拟样机及油膜压力特性研究[D];浙江大学;2009年
2 马吉恩;轴向柱塞泵流量脉动及配流盘优化设计研究[D];浙江大学;2009年
3 杨曙东;基于海水润滑的中高压海水液压泵研究[D];华中科技大学;2005年
相关硕士学位论文 前7条
1 何松霖;扁平化液力变矩器内流场特性及导轮叶形研究[D];江苏大学;2016年
2 朱艳平;装载机双涡轮液力变矩器开发研究[D];长安大学;2015年
3 李若国;一种装载机用液力变速器的研究[D];山东大学;2015年
4 张三喜;双作用液压变矩器的理论研究[D];燕山大学;2014年
5 陈俊远;液压负载敏感变矩器研究[D];兰州理工大学;2011年
6 刘仙船;基于虚拟样机的斜柱塞泵仿真研究[D];西南交通大学;2010年
7 冯翔;盘配流式海水柱塞泵设计及仿真研究[D];华中科技大学;2008年
,本文编号:1803662
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1803662.html