紧凑高效扩压器设计技术研究
发布时间:2018-05-13 19:49
本文选题:离心压气机 + 保形通道式扩压器 ; 参考:《南京航空航天大学》2016年硕士论文
【摘要】:保形通道式扩压器是一种新型的叶片式扩压器结构,其叶片从径向段进口到轴向段出口是一体化的,因此气流流过扩压器,相当于流过一系列管道,其通道面积分布形式和通道构造角分布形式对扩压器性能有着决定性的影响。而扩压器的径向尺寸限制了扩压器通道的流道长度,对扩压器的性能也有着重要影响,同时扩压器的径向尺寸往往决定了对发动机的径向尺寸大小,制约了发动机结构紧凑化的发展趋势。为了设计结构更加紧凑性能更好的扩压器,本文对保形通道式扩压器的三个关键参数(半径比、通道面积和通道构造角)开展研究,主要包括以下内容:1)研究不同半径比情况下通道面积分布对扩压器性能的独立影响规律分别在扩压器最大-进口半径比分别为1.2、1.4和1.6的三种尺寸下,单独研究扩压器通道面积分布的设计规律。研究发现,半径比为1.2时,最佳通道面积分布方式是线性度为0的形式;半径比为1.4时,最佳通道面积分布方式是线性度为12.7的形式;半径比为1.6时,最佳通道面积分布的线性度为19.6。2)研究不同半径比情况下通道构造角分布对扩压器性能的独立影响规律分别在扩压器最大-进口半径比为1.2、1.4和1.6的三种尺寸下,保证所有方案通道面积分布相同,单独研究扩压器通道构造角分布的设计规律。研究表明,在本文的研究范围内,三种径向尺寸下,扩压器的性能都是在通道构造角分布的线性度取最大值时,达到最高性能。3)分析了子午流道和叶片前后缘形状对通道面积分布规律的影响子午流道和前后缘形状的变化对扩压器面积分布形式有一定的影响,但是通道面积分布曲线中间大部分形状保持不变,线性度的值不变,说明通道面积分布曲线主体形状没有受到影响。研究表明,子午流道和叶片前后缘形状的变化并不影响扩压器通道面积分布规律的确定,通道面积分布曲线主体形状,决定了扩压器性能的高低。4)分析了半径比、通道面积分布和通道构造角分布对扩压器性能的耦合影响通过对半径比、通道面积以及通道构造角三者对保形通道式扩压器性能影响的交叉对比分析发现,在本文的研究范围内,扩压器通道面积分布和通道构造角分布规律具有独立性,其中面积分布对扩压器性能影响更大,尤其是通道面积分布取最佳方案时,通道构造角分布在很大的范围内对扩压器性能影响很小。扩压器半径比对最佳通道面积分布的规律的影响更为明显,随着扩压器半径比的变大,最佳通道面积分布的线性度逐渐增大。5)对某分段式叶片扩压器进行保形通道式改型设计根据本文研究的设计规律,以某分段式扩压器最高性能点为设计点,进行两种保形通道式改进设计,一种是保持子午流道和原型一致改型设计,另一种是减小径向尺寸的改型设计,以此来验证本文研究所得的设计规律的准确性。研究表明,两种保形通道式设计方案都能获得较原型更高的性能,这说明保形通道式扩压器结构较分段式叶片扩压器具有紧凑度以及高性能的优势。
[Abstract]:The conformal diffuser is a new type of vane diffuser structure, which is integrated from the inlet of the radial section to the exit of the axial section. Therefore, the flow through the diffuser is equivalent to a series of pipes. The distribution of the channel area and the distribution of the channel structure have a decisive influence on the performance of the diffuser. And the diffuser is the diffuser. The radial size limits the channel length of the diffuser and has an important influence on the performance of the diffuser. At the same time, the radial size of the diffuser often determines the radial size of the engine, which restricts the development trend of the compact structure of the engine. Three key parameters (radius ratio, channel area and channel structure angle) of the diffuser are studied, including the following contents: 1) the study of the independent influence of the channel area distribution on the performance of the diffuser under the condition of different radius ratio is studied separately under the maximum inlet radius ratio of 1.2,1.4 and 1.6, respectively. When the radius ratio is 1.2, the optimum channel area distribution is 0 in the form of linear degree. When the radius ratio is 1.4, the optimum channel area distribution is the form of linearity of 12.7; when the radius ratio is 1.6, the linearity of the optimal channel surface distribution is 19.6.2), and the different radii ratio conditions are studied. The independent influence law of the channel structure angle distribution on the performance of the diffuser, under the three sizes of the maximum inlet radius ratio of 1.2,1.4 and 1.6, ensures the same channel area distribution, and studies the design law of the distribution of the diffuser channel separately. The study shows that three radial feet are in the scope of this paper. In an inch, the performance of the diffuser is the maximum performance of the linear degree of the channel structure angle distribution. The maximum performance.3 is reached. The influence of the meridian channel and the shape of the front and rear edges on the distribution of the channel area has a certain influence on the area distribution of the diffuser, but the distribution of the area of the diffuser is influenced by the size distribution of the diffuser. Most of the shapes in the middle of the curve remain unchanged, the value of the linear degree is constant, which shows that the main shape of the channel area distribution curve is not affected. The study shows that the change of the shape of the meridian channel and the front and rear edge of the blade does not affect the distribution of the area of the diffuser, and the main shape of the channel surface product distribution curve determines the performance of the diffuser. The effect of radius ratio, channel area distribution and channel structure angle distribution on the performance of the diffuser is analyzed by the cross contrast analysis of the influence of the radius ratio, channel area and channel structure angle on the performance of the conformal channel expander. It is found that the channel area distribution and channel structure of the diffuser are in the scope of this paper. The distribution of the angular distribution is independent, and the area distribution has greater influence on the performance of the diffuser. Especially when the channel area distribution is the best scheme, the channel structure angle distribution has little influence on the diffuser's performance in a large range. The radius ratio of the diffuser is more obvious with the influence of the optimum channel area distribution, with the radius of the diffuser. As the ratio becomes larger, the linear degree of the optimal channel area distribution is gradually increased by.5). According to the design rule of this paper, the design of the maximum performance point of a segmented diffuser is designed according to the design rule of this paper. Two kinds of improved design of the shape preserving channel are carried out. One is to keep the meridian channel and the prototype to be the same. The other is the retrofit design of reducing the size of the diameter to verify the accuracy of the design rules obtained in this paper. The study shows that the two shape - preserving channel design schemes can obtain higher performance than the prototype, which shows that the conformal diffuser structure is more compact and high performance than that of the segmented vane diffuser. Advantage.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TH122
【参考文献】
相关期刊论文 前7条
1 吴海燕;张朝磊;;离心压气机叶片扩压器多点气动优化设计[J];风机技术;2010年06期
2 廖红桃;赛庆毅;杨爱玲;戴韧;;扩压器稠度对离心压缩机性能影响的数值分析[J];风机技术;2010年03期
3 张伟;宫武旗;樊孝华;席光;;高速离心风机叶片扩压器前缘倾角对其性能影响的实验研究[J];工程热物理学报;2009年08期
4 石建成;刘宝杰;;混合型扩压器流动特点分析[J];推进技术;2008年05期
5 费继友;戴冀;史敏;李连生;;低稠度叶片扩压器形状参数的分析[J];流体机械;2007年06期
6 张勇;闻苏平;胡小文;;叶片扩压器在小流量离心压缩机中的应用研究[J];风机技术;2007年03期
7 赵晓路,王巍;离心压气机低稠度串列叶栅扩压器流场数值分析[J];工程热物理学报;1997年02期
相关博士学位论文 前2条
1 陈杰;跨声速微型斜流压气机设计方法研究[D];南京航空航天大学;2010年
2 宣建光;微型发动机部件改进与整机性能测试[D];南京航空航天大学;2010年
相关硕士学位论文 前2条
1 朱银娟;离心压气机保型通道扩压器流动分析及设计方法研究[D];南京航空航天大学;2012年
2 姚瑞锋;离心压气机内流分析及扩压器的优化设计[D];华中科技大学;2011年
,本文编号:1884556
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1884556.html