当前位置:主页 > 科技论文 > 机电工程论文 >

基于时时能量阶比谱的变转速工况滚动轴承微弱故障诊断研究

发布时间:2018-05-20 01:23

  本文选题:故障诊断 + 滚动轴承 ; 参考:《振动工程学报》2017年05期


【摘要】:变转速工况下的滚动轴承微弱故障诊断同时面临两个难点:一是滚动轴承的故障特征信号容易被环境噪声和干扰信号淹没;二是滚动轴承故障振动信号的时变特征难以被常规频谱方法提取。针对上述问题提出了基于时时能量阶比谱的滚动轴承故障诊断方法。首先对变转速工况下的滚动轴承微弱故障振动信号进行时时(time-time,TT)变换,在双时域上刻画轴承故障振动信号的时变特征;然后利用提出的时时能量定义计算轴承故障振动信号的时时能量,获得轴承故障振动信号的时时能量信号;最后对时时能量信号进行阶比分析得到轴承故障振动信号的时时能量阶比谱,并根据时时能量阶比谱的阶次特征识别出轴承故障类型。分析了变转速工况下的滚动轴承故障仿真信号和实验测试信号,结果表明:时时能量信号能够有效追踪轴承故障振动信号的时变能量分布,增强故障特征信号的冲击特征,时时能量阶比谱较包络阶比谱抗噪能力更强,为变转速工况滚动轴承微弱故障诊断提供一种有效方法。
[Abstract]:At the same time, the weak fault diagnosis of rolling bearing under variable speed is faced with two difficulties: first, the fault characteristic signal of rolling bearing is easily submerged by environmental noise and interference signal; Second, the time-varying characteristics of rolling bearing fault vibration signal are difficult to be extracted by conventional spectrum method. To solve the above problems, a fault diagnosis method for rolling bearings based on energy order spectrum is proposed. Firstly, time-time TTT transform is used to describe the time-varying characteristics of the fault vibration signals of rolling bearings in the dual time domain. Then the time energy of bearing fault vibration signal is calculated by the definition of time energy, and the time energy signal of bearing fault vibration signal is obtained. At last, the frequency spectrum of bearing fault vibration signal is obtained by order analysis of the time energy signal, and the bearing fault type is identified according to the order characteristic of the time energy order spectrum. The fault simulation signal and experimental test signal of rolling bearing under variable rotational speed are analyzed. The results show that the time-varying energy distribution of bearing fault vibration signal can be effectively tracked and the impact characteristic of fault characteristic signal can be enhanced by the time-varying energy signal. The energy order spectrum is more robust to noise than the envelope order spectrum, which provides an effective method for the weak fault diagnosis of rolling bearings under variable speed conditions.
【作者单位】: 华北电力大学能源动力与机械工程学院;
【基金】:国家自然科学基金资助项目(51307058) 河北省自然科学基金资助项目(E2014502052) 中央高校基本科研业务专项资金资助项目(2014MS156,2017XS134)
【分类号】:TH133.33

【相似文献】

相关博士学位论文 前3条

1 李永波;滚动轴承故障特征提取与早期诊断方法研究[D];哈尔滨工业大学;2017年

2 王晓龙;基于振动信号处理的滚动轴承故障诊断方法研究[D];华北电力大学(北京);2017年

3 刘尚坤;基于振动信号处理的旋转机械故障诊断方法研究[D];华北电力大学(北京);2017年

相关硕士学位论文 前2条

1 马艳丽;基于全矢MEMD的滚动轴承状态退化研究[D];郑州大学;2017年

2 金兵;基于信息融合与VPMCD的滚动轴承智能诊断研究[D];郑州大学;2017年



本文编号:1912563

资料下载
论文发表

本文链接:https://www.wllwen.com/jixiegongchenglunwen/1912563.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户efa1d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com