当前位置:主页 > 科技论文 > 机电工程论文 >

高速重载齿轮系统热行为分析及修形设计

发布时间:2018-05-20 07:56

  本文选题:齿轮系统 + 热行为 ; 参考:《北京科技大学》2015年博士论文


【摘要】:随着工业技术的不断进步,高速重载传动设备在各个领域内得到了广泛应用,齿轮系统热行为已成为制约其发展的主要因素。本文以高速重载齿轮系统为研究主体,基于传热学理论和赫兹接触理论,通过数值仿真方法、热弹流方法研究了整个齿轮系统的热行为,包括本体温度场分布、接触区闪温分布、热变形、热弹耦合、热胶合承载能力及动态热特性等,为高速重载齿轮系统的热设计和热校核提供了依据。其主要研究内容如下: (1)基于赫兹接触和传热学理论,通过数值仿真及热弹流方法提出了精确的齿轮系统温度场的预测方法。基于有限元方法,在对流换热系数计算中考虑粘压温和密压温效应,得到更为精确的本体温度分布;以本体温度作为热弹流界面初始温度,通过求解热弹流润滑方程组,得到沿啮合线的闪温和接触温度分布,最后在封闭功率流齿轮试验台上验证和优化了本体温度的计算方法;并研究了压力角、变位系数和齿廓修形等参数对本体温度和闪温的影响。 (2)基于齿轮啮合原理和啮合面法,揭示斜齿轮副接触线总长分布规律,得到接触线总长随轴向重合度的变化规律,提出斜齿轮减振和降噪的设计方法。根据刚度分布和载荷平衡方程,得到斜齿轮副三维单位线载荷分布,为斜齿轮温度场分析和热弹耦合分析奠定了良好基础,建立斜齿轮特征坐标系以简化斜齿轮设计和校核过程。 (3)在本体温度场基础上,通过有限元方法和数值解法研究齿轮系统的热变形,并研究了热变形对载荷分布和传动误差的影响。通过数值计算方法研究了静态和动态情况下接触区内部应力分布。通过有限元方法对直齿轮和斜齿轮系统进行热弹耦合分析,得到啮合过程中的应力、热弹变形和传动误差分布,研究了温度场对齿轮系统接触行为的影响,为齿廓修形提供了参考。 (4)通过热弹流理论系统研究齿轮系统胶合承载能力。综合分析胶合承载能力的评判标准和设计方法。通过数值仿真研究接触点温度随时间变化规律。基于热弹流方法研究接触区润滑特性和热效应,得到齿轮系统闪温和油膜厚度分布,研究不同工况参数和润滑油参数对热弹流润滑特性的影响,评估了不同齿轮副的胶合承载能力:综合分析Blok理论和热弹流理论在胶合承载能力上的应用;在动载荷基础上,研究直齿轮系统瞬态热弹流分析,得到了动态下的胶合承载结果。 (5)基于啮合刚度分布和载荷平衡方程,研究直齿轮系统的齿廓修形机理,得到不同修形参数下的载荷分布和传动误差分布。根据热变形和热弹耦合分析结果确定最佳齿廓修形曲线。在静态分析和动态分析的基础上,,提出齿廓修形参数的选择原则和方法。 (6)基于时变刚度和系统动力学模型,得到齿轮系统动载荷分布和动态特必,分析了动载系数随转速和阻尼变化规律,研究了齿轮系统幅频特性和共振问题,并通过封闭功率流齿轮试验台研究不同润滑情况、不同工况参数下的振动特性。 本课题山国家自然科学基金(No.51275035)资助。
[Abstract]:With the continuous progress of industrial technology, high speed heavy load transmission equipment has been widely used in various fields. The thermal behavior of gear system has become the main factor restricting its development. This paper takes the high speed heavy load gear system as the main body, based on the theory of heat transfer and the theory of Hertz contact, and studies the thermal elastohydrodynamic method through numerical simulation method. The thermal behavior of the whole gear system, including the distribution of the temperature field of the body, the flash temperature distribution in the contact area, the thermal deformation, the thermoelastic coupling, the thermal bonding carrying capacity and the dynamic thermo characteristics, provides the basis for the thermal design and heat checking of the high speed heavy load gear system. The main contents of the research are as follows:
(1) based on the Hertz contact and heat transfer theory, the accurate prediction method of the temperature field of the gear system is proposed by numerical simulation and thermal elastohydrodynamic method. Based on the finite element method, a more accurate temperature distribution of the body is obtained in the calculation of the convection heat transfer coefficient, and the body temperature is used as the initial surface of the thermal elastohydrodynamic interface. At the beginning of the temperature, the distribution of flash temperature and temperature distribution along the meshing line is obtained by solving the thermal elastohydrodynamic lubrication equations. Finally, the calculation method of the temperature of the body is verified and optimized on the closed power flow gear test bench, and the influence of the pressure angle, the variation coefficient and the tooth profile modification on the body temperature and the flash temperature is also studied.
(2) based on the gear meshing principle and meshing surface method, the distribution law of the total length of the contact line of the helical gear is revealed, and the change law of the length of the contact line with the axial coincidence degree is obtained. The design method of the vibration damping and noise reduction of the helical gear is proposed. According to the stiffness distribution and the load balance equation, the load distribution of the three dimensional unit line of the helical gear pair is obtained, which is the temperature field of the helical gear. The analysis and thermo elastic coupling analysis have laid a good foundation for establishing helical gear characteristic coordinate system to simplify the design and checking process of helical gears.
(3) on the basis of the temperature field of the body, the thermal deformation of the gear system is studied by the finite element method and numerical solution, and the influence of the thermal deformation on the load distribution and the transmission error is studied. The internal stress distribution in the contact area under static and dynamic conditions is studied by the numerical method. Through the finite element method, the system of the spur gear and the helical gear system is introduced through the finite element method. The stress, thermal elastic deformation and transmission error distribution in the meshing process are obtained by the coupled thermal elastic coupling analysis. The influence of temperature field on the contact behavior of the gear system is studied, which provides a reference for the tooth profile modification.
(4) study the gluing bearing capacity of gear system through the thermal elastohydrodynamic theory system. A comprehensive analysis of the evaluation standard and design method of the adhesive bearing capacity is made. Through numerical simulation, the temperature of contact point is studied with time. Based on the thermal elastohydrodynamic method, the lubrication characteristics and thermal effects of the contact area are studied, and the thickness distribution of the gear system flash and the oil film is obtained. The effect of different working condition parameters and lubricating oil parameters on the thermal elastohydrodynamic lubrication characteristics is investigated, and the adhesive bearing capacity of different gear pairs is evaluated. The application of Blok theory and thermal elastohydrodynamic theory on the adhesive bearing capacity is synthetically analyzed. On the basis of dynamic load, the transient thermal elastohydrodynamic analysis of the spur gear system is studied, and the dynamic adhesive bearing junction is obtained. Fruit.
(5) based on the meshing stiffness distribution and load balance equation, the tooth profile modification mechanism of the spur gear system is studied. The load distribution and transmission error distribution under different modification parameters are obtained. According to the thermal deformation and thermal elastic coupling analysis, the optimum profile modification curve is determined. On the basis of static analysis and dynamic analysis, the tooth profile modification parameters are put forward. Choose principles and methods.
(6) based on the time-varying stiffness and the system dynamics model, the dynamic load distribution and dynamic characteristic of the gear system are obtained. The variation law of the dynamic load coefficient with the speed and damping is analyzed. The amplitude frequency characteristics and resonance problems of the gear system are studied. The vibration characteristics of different lubrication conditions and different working conditions are studied by the closed power flow gear test bench.
This project is supported by the National Natural Science Foundation of China (No.51275035).
【学位授予单位】:北京科技大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TH132.41

【参考文献】

相关期刊论文 前10条

1 朱才朝;陆波;徐向阳;刘伟辉;宁杰;;大功率船用齿轮箱系统热弹耦合分析[J];船舶力学;2011年08期

2 丁玉成,王建军,李润方;直齿轮接触有限元分析及轮齿热弹变形[J];重庆大学学报(自然科学版);1987年02期

3 李润方,丁玉成,黎豫生,汤庆平;圆柱齿轮热弹变形数值分析[J];重庆大学学报(自然科学版);1993年01期

4 钱学毅;吴双;;基于弹流润滑理论的非对称齿轮胶合强度多目标优化[J];工程设计学报;2010年06期

5 李威;刘宁;俞必强;郑璐晗;;齿轮裂纹对动载荷谱的影响[J];北京科技大学学报;2013年04期

6 俞必强;李威;薛建华;蒋磊;;基于动载荷谱的齿轮弯曲疲劳寿命预测[J];北京科技大学学报;2013年06期

7 王丹;陆瑞成;闫玉涛;孙志礼;;航空发动机齿轮接触分析与修形研究[J];东北大学学报(自然科学版);2013年08期

8 江亲瑜;杨震生;王松年;;齿轮胶合强度计算软件的研制[J];大连铁道学院学报;1992年03期

9 李桂华;费业泰;;标准渐开线齿轮热变形时的非渐开特性研究[J];哈尔滨工业大学学报;2006年01期

10 方宗德,陈国定,沈允文;内啮合斜齿轮的齿面闪温计算[J];航空动力学报;1992年04期



本文编号:1913795

资料下载
论文发表

本文链接:https://www.wllwen.com/jixiegongchenglunwen/1913795.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e48bd***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com