自润滑滑动轴承气固两相流数值模拟研究
本文选题:自润滑滑动轴承 + 两相流 ; 参考:《辽宁科技大学》2017年硕士论文
【摘要】:添加自润滑材料所制成的自润滑滑动轴承具有其它种类的滑动轴承所没有的优越性,是取代传统轴承的换代产品,已被广泛应用于众多领域。自润滑轴承的相关分析已成为时下轴承研究的热点。本文针对自润滑滑动轴承的工作状态进行数值模拟分析,结合两相流理论、计算流体力学和计算固体力学,应用了ICEM CFD、FLUENT及ANAYS Workbench等软件。不仅将两相流理论应用于机械领域,还实现了多种软件的组合使用。此研究首先对气基轴承进行建模分析,研究了自润滑材料颗粒性质不同时,润滑膜承载能力、压力及固相体积分数分布情况。然后在不改变轴承模型的基础上,改变轴承的润滑状态,施加少许润滑油,对油基轴承进行分析并与气基时的工作状态进行对比。最后对自润滑滑动轴承的轴套进行流固耦合分析,研究了轴承转速变化时,轴套的应力及变形量分布情况。数值模拟的结果表明,在自润滑轴承处于干摩擦状态时,如果轴承转速较高、自润滑材料颗粒体积分数较大、颗粒直径较小时,可以获得较大的润滑膜承载能力。且此时润滑膜的左下方压力最大,自润滑材料颗粒也在此处最为集中。在自润滑轴承处于油润滑状态时,相比于气基的情况,无论何种轴承转速下油基润滑膜的承载能力均受颗粒直径变化的影响较小。且气基润滑膜中自润滑材料颗粒的性质决定了润滑膜的承载能力和最大压力,而在油基润滑膜中,其作用则大为降低。在气基润滑膜流场与轴套耦合时,发现随着轴承转速的增大,轴套的应力及变形量的最大值与区域面积均随之不断增大,但应力值始终远小于钢背的屈服极限。而且轴承转速的变化对轴套应力及变形量的分布趋势无较大影响,只有数值上的改变。通过本文研究出的成果,可以深入了解自润滑滑动轴承各种情况下的工作状态,为其优化设计、延长使用寿命及提高可靠性提供一些理论依据,具有比较大的实际意义。
[Abstract]:Self-lubricating sliding bearings made by adding self-lubricating materials have the advantages that other kinds of sliding bearings have not. They are replacement products of traditional bearings and have been widely used in many fields. The correlation analysis of self-lubricating bearing has become the hot spot of bearing research. In this paper, the working state of self-lubricating sliding bearings is numerically simulated and analyzed. Combined with the two-phase flow theory, the software ICEM CFDF fluent and ANAYS Workbench are used to calculate hydrodynamics and computational solid mechanics. The two-phase flow theory is not only applied to the mechanical field, but also realized the combination of many kinds of software. In this study, first of all, the modeling and analysis of gas based bearings were carried out, and the distribution of load carrying capacity, pressure and volume fraction of solid phase of self-lubricating materials with different particle properties were studied. Then, on the basis of not changing the bearing model, the lubrication state of the bearing is changed, a little lubricating oil is applied, and the oil base bearing is analyzed and compared with the working state when the bearing is based on air. Finally, the fluid-solid coupling analysis of the shaft sleeve of the self-lubricating sliding bearing is carried out, and the distribution of the stress and deformation of the sleeve is studied when the speed of the bearing changes. The numerical simulation results show that when the self-lubricating bearing is in the dry friction state, if the speed of the bearing is higher, the particle volume fraction of the self-lubricating material is larger, and the particle diameter is small, the bearing capacity of the lubricating film can be obtained. At this time, the pressure of the lower left of the lubrication film is the largest, and the self-lubricating material particles are also the most concentrated here. When the self-lubricating bearing is in the oil-lubricated state, the bearing capacity of the oil-based lubricating film is less affected by the change of particle diameter than that of the gas-based bearing under any bearing speed. The bearing capacity and maximum pressure of the film are determined by the properties of the self-lubricating material particles in the gas-base lubricating film, but the role of the self-lubricating material in the oil-based lubricating film is greatly reduced. It is found that with the increase of bearing speed, the maximum value of stress and deformation and the area of region increase with the coupling of gas lubricating film flow field with the sleeve, but the stress value is always much smaller than the yield limit of the steel back. Moreover, the change of bearing speed has no great influence on the distribution trend of the stress and deformation of the shaft sleeve, but only the numerical change. Through the research results in this paper, the working state of self-lubricating sliding bearings under various conditions can be deeply understood, which provides some theoretical basis for optimizing design, prolonging service life and improving reliability. It is of great practical significance.
【学位授予单位】:辽宁科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH133.31
【参考文献】
相关期刊论文 前10条
1 刘乾;朱禹川;万占鸿;肖卿鹤;;润滑油中固体颗粒对液体静压滑动轴承油膜承载能力的影响[J];润滑与密封;2016年11期
2 陈锋;王春江;周岱;;流固耦合理论与算法评述[J];空间结构;2012年04期
3 罗仕雨;罗洪佳;;SF自润滑轴承及其装配[J];现代机械;2011年02期
4 解挺;万媛媛;缪鹏;温丹丹;焦明华;俞建卫;尹延国;;PTFE三层复合材料摩擦过程的界面动态迁移[J];润滑与密封;2010年02期
5 任志安;郝点;谢红杰;;几种湍流模型及其在FLUENT中的应用[J];化工装备技术;2009年02期
6 钱若军;董石麟;袁行飞;;流固耦合理论研究进展[J];空间结构;2008年01期
7 俞建卫;李卫荣;焦明华;马少波;刘q;;烧结工艺对PTFE自润滑轴承材料摩擦性能的影响[J];轴承;2007年08期
8 骆志高;周士冲;陈坤;陈磊;;PTFE钢基铜塑自润滑复合材料的加工工艺优化与性能研究[J];矿山机械;2006年04期
9 魏淑贤,沈跃,黄延军;计算流体力学的发展及应用[J];河北理工学院学报;2005年02期
10 阎家宾;自润滑滑动轴承[J];世界橡胶工业;2005年04期
相关博士学位论文 前2条
1 贺靖峰;基于欧拉—欧拉模型的空气重介质流化床多相流体动力学的数值模拟[D];中国矿业大学;2012年
2 李孔清;室内超细悬浮颗粒模型及算法研究[D];湖南大学;2007年
相关硕士学位论文 前9条
1 胡宝根;自润滑关节轴承仿真分析及衬垫材料摩擦性能研究[D];南京航空航天大学;2014年
2 李杰;基于大涡模拟的室内悬浮颗粒运动规律研究[D];湖南大学;2013年
3 盛晓飞;两相流流动扩散模型的建立及数值模拟[D];哈尔滨理工大学;2012年
4 解元玉;基于ANSYS Workbench的流固耦合计算研究及工程应用[D];太原理工大学;2011年
5 吴云峰;双向流固耦合两种计算方法的比较[D];天津大学;2009年
6 娄涛;基于ANSYS的流固耦合问题数值模拟[D];兰州大学;2008年
7 舒伟才;GCr15/铝合金-PTFE自润滑轴承制备及摩擦磨损性能[D];南京航空航天大学;2008年
8 胡萍;聚四氟乙烯基固体润滑剂的结构、制备及性能研究[D];武汉理工大学;2004年
9 李孔清;室内悬浮颗粒数值研究及辐射计算[D];湖南大学;2003年
,本文编号:1922382
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1922382.html