连杆曲线的形态学分类及演化
本文选题:连杆曲线 + 分类与度量 ; 参考:《西南科技大学》2017年硕士论文
【摘要】:连杆机构连杆平面上的点可再现复杂代数曲线这一特性,在实际工程中有重要的应用价值,平面机构连杆曲线是指平面连杆机构中连杆做平面运动时,连杆上的点在机架固定坐标系下的轨迹曲线。连杆曲线的性质与分布规律体现了连杆平面运动的几何学性质,也是机构综合的重要理论基础。平面四杆机构的连杆曲线可分为鹅蛋形、鸭梨形、雨滴形、香蕉形、“8”字形和双“8”字形,然而上述对连杆曲线定性的认识,缺乏定量的数学度量指标或者不完善,很难将机构的运动特性与曲线的形态特征联系起来。伴随数值图谱法的发展,机构学者根据数值图谱法中连杆轨迹匹配参数提取的需要,从计算存储和检索速度的角度出发提出了数值识别方法,即采用特定的偏差公式计算全部生成曲线与样本曲线之间的综合偏差值,然后根据相应的综合偏差值对轨迹曲线进行分类识别,该方法旨在利用曲线之间的综合偏差值对轨迹曲线进行识别分类,有一定的优点,但它很难直接通过曲线的特征参数去认识曲线的形态特征,或者不能将连杆曲线的突变和渐变规律与机构尺度的变化联系起来。20世纪以来,Muller等人对平面运动几何学的曲率理论的建立和完善,Savary曲率理论中的Euler-Savary公式,Cauchy的刚体平面运动瞬心线对滚,Bobillier定理,Ball点,Burmester点等相关理论趋于成熟,平面连杆曲线局部几何特性的分布规律被逐步揭示,而连杆曲线形态的改变通常依赖于其局部几何特征的突变,这为基于机构运动特性的连杆曲线形态学分析提供了条件。本文把奇点的位置信息与机构尺度变化信息结合起来,利用现代几何学曲线曲率理论,构建了尖点、二重点和自切点的数学方程,依据平面四杆机构运动的几何约束关系,解算奇点存在的约束方程,分析了尖点、二重点和自切点的渐变特性,实现了对连杆曲线奇点间相对拓扑关系和位置信息的数学描述,获得了连杆曲线的奇点拓扑环,利用奇点间的拓扑结构去描述连杆曲线的形态特征,这对于分析连杆曲线形态特征的尺度变化规律具有一定的优势。
[Abstract]:The point on the plane of the connecting rod mechanism can reproduce the complex algebraic curve, which has important application value in the practical engineering. The connecting rod curve of the plane mechanism means that the connecting rod in the plane linkage mechanism is moving in the plane. The trace curve of a point on a connecting rod in a fixed frame coordinate system. The properties and distribution of the connecting rod curve reflect the geometric properties of the planar motion of the connecting rod, and are also the important theoretical basis of mechanism synthesis. The connecting rod curve of planar four-bar linkage can be divided into goose egg shape, pear shape, raindrop shape, banana shape, "8" shape and double "8" shape. It is difficult to relate the kinematics of the mechanism to the shape of the curve. With the development of numerical map method, according to the need of extracting the matching parameters of linkage trajectory in the numerical map method, a numerical recognition method is proposed from the point of view of computing storage and retrieval speed. That is to calculate the synthetic deviation value between the generated curve and the sample curve by using the specific deviation formula, and then classify and identify the trajectory curve according to the corresponding comprehensive deviation value. This method is aimed at identifying and classifying the trajectory curve by using the synthetic deviation value between curves, which has some advantages, but it is difficult to recognize the shape characteristics of the curve directly through the characteristic parameters of the curve. Or we can't relate the sudden change and gradual change of connecting rod curve to the change of mechanism scale. Since the 20th century, the author and others have established the curvature theory of plane motion geometry and perfected the Euler-Savary formula in Savary's curvature theory and the rigid body of Cauchy. The theory of the instantaneous centroid of plane motion, such as Ball point and Burmester point, tends to be mature. The distribution of the local geometric characteristics of planar connecting rod curves is revealed step by step, and the change of the shape of connecting rod curves usually depends on the abrupt changes of their local geometric characteristics, which provides a condition for morphological analysis of connecting rod curves based on the kinematic characteristics of mechanisms. In this paper, the position information of singularity is combined with the information of mechanism scale change, and the mathematical equations of tip point, two focal point and self-tangent point are constructed by using the theory of curve curvature of modern geometry, according to the geometric constraint relation of the motion of planar four-bar mechanism. The constraint equations of singularities are solved, and the gradient characteristics of tip, two-point and self-shear points are analyzed. The relative topological relation and position information between singularities of connecting rod curves are described mathematically, and the topological loops of singularities of connecting rod curves are obtained. The topological structure between singularities can be used to describe the morphological characteristics of the connecting rod curve, which has a certain advantage in analyzing the scale variation law of the shape characteristic of the connecting rod curve.
【学位授予单位】:西南科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH112
【相似文献】
相关期刊论文 前6条
1 崔显付;;吉图珲客运专线平面曲线参数设计研究[J];铁道标准设计;2014年09期
2 张立民;沥青泵转子钳形曲线理论分析与计算[J];武汉工业大学学报;1989年02期
3 张朋,戴新民;P-S-N曲线统计精度分析[J];理化检验(物理分册);2002年12期
4 金建国;;关联图形与曲线参数化的拓扑学原理[J];浙江工业大学学报;2012年05期
5 齐辛伟;方海珊;;数字化施工PTS曲线生成系统的设计与实现[J];山西建筑;2009年02期
6 赵永翔;杨冰;;不完善概率疲劳S-N曲线的Monte Carlo修正[J];机械工程学报;2011年12期
相关会议论文 前2条
1 方林聪;汪国昭;;六次PH曲线C~1 Hermite插值[A];第六届全国几何设计与计算学术会议论文集[C];2013年
2 张贵仓;王让定;李睿;杨俊;李曦焱;赵燕梅;;奇异混合Bézier样条曲线[A];几何设计与计算的新进展[C];2005年
相关博士学位论文 前1条
1 钱金花;关于类光曲线及圆纹曲面性质的研究[D];东北大学;2014年
相关硕士学位论文 前6条
1 马淑娟;有理B(?)zier曲线的Hermite插值问题研究[D];合肥工业大学;2016年
2 左华;Lupas(?)q-Bézier曲线的几何特征研究[D];河北师范大学;2017年
3 李宽;连杆曲线的形态学分类及演化[D];西南科技大学;2017年
4 樊云峰;平面点云曲线重建的一种新算法[D];郑州大学;2010年
5 周贵宾;C曲线和H曲线的Path[D];浙江大学;2007年
6 段晓慧;两条Bézier曲线间的重合与部分重合检测[D];杭州电子科技大学;2014年
,本文编号:1926413
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1926413.html