水压阀口特性仿真研究
本文选题:流量 + 阀口 ; 参考:《中国海洋大学》2015年硕士论文
【摘要】:水液压技术以其绿色环保、安全、高效、成本低廉等优点,在工程机械、海洋开发、新能源利用等诸多领域具有非常广阔的应用前景。水压控制阀是水液压传动技术相当重要的组成部分,水液压传动技术的大范围推广应用必须以研制出高性能水液压控制阀为前提。而水压阀口的特性作为水压控制阀研究的核心,必须放在首要位置。本文对提升型阀口的常见类型进行了较为系统的仿真研究,并根据仿真结果分析了阀口的各项特性,为水液压阀口的选型、设计提供了一定的参考依据。主要工作如下:一级节流锥阀阀口的水力学特性仿真,包括阀芯锥角及阀座倒角长度对阀口水力学特性的影响。经分析发现,阀芯锥角a增大会阻碍流体在阀口内的流动,使流体作用在阀芯上的力增大,相反,阀芯锥角增大有利于减小阀口内部的气穴现象;而对于带倒角的一级节流锥阀,同等条件下,阀座倒角长度的增加对流经阀口的流量及作用在阀芯上的液动力无明显影响,但有利于减小阀口内部的气穴现象。球阀及平板阀的水力学特性仿真,分析不同阀芯结构对阀口水力学特性的影响。锥阀与球阀比较,在阀口内部都发生气穴的情况下,锥阀的流量更稳定,同时锥阀的抗气蚀性能明显强于球阀,但是锥阀阀芯受到的液动力稍微高于球阀阀芯受到的液动力,综合考虑以上三种特性,锥阀性能比球阀好:进一步将锥阀与平板进行比较,在阀口内部都发生气穴的情况下,通过锥阀的流量小于通过平板阀的流量,同时当入口压力大于6MPa时,锥阀阀芯受到的液动力小于平板阀阀芯受到的液动力,并且锥阀的抗气蚀性能比平板阀好,综合考虑以上三种特性,锥阀性能比平板阀好。二级节流锥阀阀口水力学特性仿真,包括阀芯锥角及带缓冲槽的阀口缓冲角对阀口水力学特性的影响。经分析发现,同等条件下,阀芯锥角a增大会阻碍流体在阀口内的流动,当a较小时,这种阻碍作用可忽略,相反,阀芯锥角a增大会使阀芯受到的液动力减小,同时增大阀芯锥角有利于减小阀口内部的气穴现象;对带有缓冲槽的二级节流阀口,同等条件下,缓冲角a的增大对阀芯受到的液动力无明显影响,无缓冲槽阀口阀芯受到的液动力要比有缓冲槽的阀口阀芯受到的液动力稍大一些,对阀口的抗气蚀性能,同等条件下,缓冲角小的阀口,抗气蚀特性好,不带缓冲槽的二级节流阀口,阀口的抗气蚀性能介于a=]0。与a=15。之间。一级节流与二级节流比较,同等条件下,通过一级节流阀口的流量大于通过二级节流阀口的流量,二级节流阀口阀芯受到的液动力大于一级节流阀口阀芯受到的液动力,二级节流的抗气蚀性能优于一级节流。最后对提升阀口特性试验装置做了简要的介绍,完成了对全文的总结。
[Abstract]:Water hydraulic technology has a very broad application prospect in many fields such as construction machinery, marine development, new energy utilization and so on, because of its advantages of green environmental protection, safety, high efficiency, low cost and so on. Water hydraulic control valve is a very important part of water hydraulic transmission technology. The development of high performance water hydraulic control valve must be the prerequisite for the wide application of water hydraulic drive technology. As the core of the research on hydraulic control valve, the characteristics of water pressure valve must be placed in the primary position. This paper makes a systematic simulation study on the common types of riser valves, and analyzes the characteristics of the valves according to the simulation results, which provides a certain reference for the selection and design of the hydraulic valves. The main work is as follows: the hydraulic characteristics of the orifice of the primary throttle valve are simulated, including the influence of the cone angle of the valve core and the chamfer length of the valve seat on the hydrodynamic characteristics of the valve. Through analysis, it is found that the increase of cone angle a will hinder the flow of fluid in the valve port and increase the force of the fluid acting on the valve core. On the contrary, the increase of the cone angle of the valve core will help to reduce the cavitation phenomenon inside the valve port. For the first-order tapered valve with chamfer, the increase of chamfer length has no obvious effect on the flow through the valve port and the fluid power acting on the valve core, but it is helpful to reduce the cavitation phenomenon inside the valve port. The hydraulic characteristics of ball valve and plate valve are simulated, and the influence of different valve core structure on the mechanical characteristics of valve saliva is analyzed. The flow rate of cone valve is more stable than that of ball valve, and the cavitation resistance of cone valve is obviously better than that of ball valve, but the hydraulic force of cone valve core is slightly higher than that of ball valve core. Considering the above three characteristics, the performance of cone valve is better than that of ball valve: further comparing the cone valve with the plate valve, the flow rate through the cone valve is smaller than that through the plate valve when the air holes occur inside the valve port. At the same time, when the inlet pressure is greater than 6MPa, the cone valve core is subjected to less hydraulic power than the flat valve core, and the cavitation resistance of the cone valve is better than that of the plate valve. Considering the above three characteristics, the cone valve performance is better than the plate valve. The simulation of the hydrodynamic characteristics of the two-stage throttle valve includes the influence of the cone angle of the valve core and the buffer angle of the valve mouth with the buffer slot on the mechanical characteristics of the valve saliva. It is found that under the same conditions, the increase of the cone angle a of the valve core will hinder the flow of the fluid in the valve orifice. When a is small, this hindrance can be neglected. On the contrary, the increase of the cone angle a of the valve core will reduce the hydraulic force of the valve core. At the same time, increasing the cone angle of the valve core helps to reduce the cavitation phenomenon in the valve orifice, and the increase of the buffer angle a has no obvious effect on the hydraulic power of the valve core under the same conditions for the two-stage throttle valve with buffer groove. The valve core with no buffer groove is subjected to a slightly greater hydraulic force than the valve core with a buffer groove. Under the same conditions, the cavitation resistance of the valve with small buffer angle is better than the cavitation resistance of the valve core. Two-stage throttle with no buffer slot, the cavitation resistance of the valve is between a =] 0. And a 15. Between. Under the same conditions, the flow through the orifice of the first throttle is greater than that through the orifice of the secondary throttle, and the fluid power of the spool of the secondary throttle is greater than that of the valve core of the orifice of the primary throttle. The anti-cavitation performance of two-stage throttling is better than that of one-stage throttling. Finally, a brief introduction is made to the test device of the riser port characteristics, and a summary of the full text is completed.
【学位授予单位】:中国海洋大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TH137.52
【相似文献】
相关期刊论文 前10条
1 傅锡寿;;钢珠式阀门阀口成形的改进[J];机械制造;1981年03期
2 安治国;防止水泥纸袋阀口封闭不严的措施[J];中国建材;1991年05期
3 李松年 ,史维祥 ,葛思华;阀口高速流区伯努利效应分析及其应用[J];北京理工大学学报;1990年S3期
4 宋述稳;陈勇;;钢珠式单向阀门的阀口漏气修理[J];机械制造;2006年08期
5 冀宏;王东升;刘小平;傅新;;滑阀节流槽阀口的流量控制特性[J];农业机械学报;2009年01期
6 俞宏福;贾文华;殷晨波;;节流槽阀口的流量控制特性研究[J];中国制造业信息化;2011年07期
7 李宝仁;秦小飞;余祖耀;桂永胜;;全塑料浮止阀阀口3D数值仿真研究[J];中国机械工程;2006年22期
8 贾文华;殷晨波;;阀口气穴流场的数值模拟与实验研究[J];液压与气动;2010年04期
9 傅新;杜学文;;阀口高速流动中的气穴观测与流场分析[J];液压与气动;2006年07期
10 曾锦艳;沈华;;空调压缩机法兰阀口成形裂纹的研究[J];粉末冶金工业;2011年06期
相关会议论文 前4条
1 傅新;杜学文;;阀口高速流动中的气穴观测与流场分析[A];第四届全国流体传动与控制学术会议论文集[C];2006年
2 李洪人;关广丰;郭洪波;丛大成;张辉;叶正茂;;考虑阀口误差影响的阀控非对称液压缸系统建模仿真与试验研究[A];第四届全国流体传动与控制学术会议论文集[C];2006年
3 冀宏;张继环;王东升;张玮;刘小平;;滑阀矩形节流槽阀口的流量系数[A];中国机械工程学会流体传动与控制分会第六届全国流体传动与控制学术会议论文集[C];2010年
4 李洪洲;曹俊章;李松晶;;高温燃料流量调节阀拉瓦尔管阀口特性分析[A];第十五届流体动力与机电控制工程学术会议论文集[C];2011年
相关重要报纸文章 前1条
1 鲍新;弃缝改糊势在必行[N];中国包装报;2003年
相关博士学位论文 前1条
1 高红;溢流阀阀口气穴与气穴噪声的研究[D];浙江大学;2003年
相关硕士学位论文 前10条
1 李永恒;黑水调节阀失效形式分析与结构优化[D];宁夏大学;2015年
2 詹彩霞;Y公司市场营销策略研究[D];郑州大学;2015年
3 张鹏;旋转阀口试验台的研发及旋转阀口的仿真研究[D];中国海洋大学;2015年
4 覃良美;水压阀口特性仿真研究[D];中国海洋大学;2015年
5 张建平;水压阀口特性试验平台的研制[D];中国海洋大学;2014年
6 徐宁;基于气动流量法的阀口特性自动化测量技术的研究[D];哈尔滨工业大学;2007年
7 侯冠男;大流量比例换向阀先导级阀口流量特性研究[D];燕山大学;2014年
8 吴正江;水压伺服阀典型阀口流动特性的研究[D];华中科技大学;2005年
9 向鹏;海水液压阀阀口结垢实验研究[D];华中科技大学;2011年
10 周会;液压滑阀阀口的特性研究[D];西南交通大学;2009年
,本文编号:1934287
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1934287.html