基于谐波小波和去趋势波动分析的摩擦振动信号研究
发布时间:2018-06-06 04:36
本文选题:谐波小波 + 去趋势波动分析 ; 参考:《振动与冲击》2017年15期
【摘要】:为实现摩擦振动信号的降噪和摩擦振动信号特征提取,在往复式摩擦磨损试验机上进行了摩擦副摩合磨损试验。应用谐波小波对获得的非线性、非平稳的摩擦振动信号进行分解,实现摩擦振动信号的降噪。应用去趋势波动分析算法对摩擦振动信号进行分析,获得不同阶数下的Hurst指数,判别数据序列的属性及其趋势增强的程度。研究结果表明,随着磨合磨损试验的进行,摩擦振动信号的标度指数呈现逐渐增大的变化趋势,去趋势波动分析算法能够实现摩擦振动信号特征提取,摩擦振动信号的标度指数变化能够用于摩擦副的磨合磨损状态监测和识别。
[Abstract]:In order to reduce the noise of the friction vibration signal and extract the feature of the friction vibration signal, the friction pair friction and wear test was carried out on the reciprocating friction and wear tester. The nonlinear and non-stationary friction vibration signals obtained are decomposed by harmonic wavelet, and the noise reduction of friction vibration signals is realized. The Hurst exponent under different order is obtained by analyzing the friction vibration signal by using the detrend wave analysis algorithm, and the attribute of the data series and the degree of trend enhancement are distinguished. The results show that the scaling index of friction vibration signal increases gradually with the running in and wear test, and the characteristic extraction of friction vibration signal can be realized by undulating analysis algorithm. The change of scale exponent of friction vibration signal can be used to monitor and identify the running-in and wear state of friction pair.
【作者单位】: 上海海事大学商船学院;大连海事大学轮机工程学院;
【基金】:国家高技术研究发展计划(863计划)(2013AA040203)
【分类号】:TH117.1
【相似文献】
相关硕士学位论文 前1条
1 吴永恒;基于自适应非趋势波动分析的齿轮故障诊断[D];武汉科技大学;2014年
,本文编号:1985125
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1985125.html