当前位置:主页 > 科技论文 > 机电工程论文 >

基于VMD与自相关分析的滚动轴承故障特征提取

发布时间:2018-06-18 09:09

  本文选题:自相关分析 + 变分模态分解 ; 参考:《电子测量与仪器学报》2017年09期


【摘要】:滚动轴承故障信号多呈现非平稳、多分量调制特性,早期故障信号调制特性微弱、易受周围设备噪声干扰,导致轴承早期故障特征淹没在噪声信号中,故障特征难以提取。为此,提出一种变分模态分解(variational mode decomposition,VMD)与自相关分析相结合的轴承故障特征提取方法。首先利用自相关分析消除故障信号中噪声干扰,提取周期成分;然后再用VMD算法将消噪信号分解成若干本征模态分量(intrinsic mode function,IMF),运用能量算子对相关系数及峭度值较大分量进行解调分析;最后通过能量解调谱来判别滚动轴承故障类型。将该方法应用到滚动轴承仿真故障数据和实测数据中,结果表明,该方法可降低了噪声的干扰,有效提取故障特征频率,能够实现滚动轴承故障的精确诊断。
[Abstract]:The fault signals of rolling bearings show non-stationary and multi-component modulation characteristics, and the modulation characteristics of early fault signals are weak, which are easily disturbed by the noise of the surrounding equipment, resulting in the early fault features of bearings being submerged in the noise signals, and the fault features are difficult to extract. In this paper, a method of bearing fault feature extraction based on variable-mode decomposition (VMD) and autocorrelation analysis is proposed. First, the autocorrelation analysis is used to eliminate the noise interference in the fault signal, and the periodic component is extracted. Then the de-noising signal is decomposed into several intrinsic mode function IMFGs by using VMD algorithm, and the correlation coefficient and large kurtosis component are demodulated by energy operator. Finally, the fault types of rolling bearing are identified by energy demodulation spectrum. The method is applied to the rolling bearing simulation fault data and the measured data. The results show that the method can reduce the noise interference, extract the fault characteristic frequency effectively, and realize the accurate diagnosis of rolling bearing fault.
【作者单位】: 石家庄铁道大学电气与电子工程学院;
【基金】:国家自然科学基金(U1534204,11372199,11572206) 河北省然科学基金(A2014210142)资助项目
【分类号】:TH133.33

【相似文献】

相关期刊论文 前10条

1 王延松,,李树才,蒋钰洁;滚动轴承故障的快速诊断[J];林业机械与木工设备;1996年03期

2 张益纯,刘振娟;滚动轴承故障分析探讨[J];内燃机配件;2000年03期

3 秦恺,陈进,姜鸣,陈春梅;一种滚动轴承故障特征提取的新方法——谱相关密度[J];振动与冲击;2001年01期

4 邓长春;;声发射法在滚动轴承故障识别中的应用[J];试验技术与试验机;2002年Z2期

5 任昭蓉;滚动轴承故障的小波诊断法[J];机械制造与自动化;2004年06期

6 陆爽,田野;滚动轴承故障特征识别的时频分析研究[J];机床与液压;2005年06期

7 江涌;基于余弦调频小波变换的滚动轴承故障研究[J];机械设计与制造;2005年06期

8 程光友;;时域指标在滚动轴承故障诊断中的应用[J];中国设备工程;2005年12期

9 陈洪军;赵新泽;王延军;;滚动轴承故障试验台的理论建模分析[J];四川理工学院学报(自然科学版);2005年04期

10 李崇晟;滚动轴承故障的非线性诊断方法[J];轴承;2005年05期

相关会议论文 前10条

1 张益纯;;常见滚动轴承故障诊断的技术探讨[A];第十届全国设备监测与诊断技术学术会议论文集[C];2000年

2 杨积忠;左立建;;滚动轴承故障诊断实例[A];设备监测与诊断技术及其应用——第十二届全国设备监测与诊断学术会议论文集[C];2005年

3 何斌;戚佳杰;;小波分析在滚动轴承故障诊断中的应用研究[A];第九届全国振动理论及应用学术会议论文摘要集[C];2007年

4 李放宁;;峰值能量在滚动轴承故障诊断中的应用[A];第十届全国设备监测与诊断技术学术会议论文集[C];2000年

5 何斌;戚佳杰;;小波分析在滚动轴承故障诊断中的应用研究[A];第九届全国振动理论及应用学术会议论文集[C];2007年

6 张九军;;常见滚动轴承故障的简易诊断[A];2008年全国炼铁生产技术会议暨炼铁年会文集(上册)[C];2008年

7 李兴林;;滚动轴承故障诊断技术现状及发展[A];2009年全国青年摩擦学学术会议论文集[C];2009年

8 唐海峰;陈进;董广明;;信号稀疏分解方法在滚动轴承故障诊断中的应用[A];第十二届全国设备故障诊断学术会议论文集[C];2010年

9 高耀智;;高阶统计量与小波分析相结合在滚动轴承故障诊断中的应用[A];2009年全国青年摩擦学学术会议论文集[C];2009年

10 和卫星;陈晓平;马东玲;;基于混沌时间序列的滚动轴承故障局部预测[A];2009中国仪器仪表与测控技术大会论文集[C];2009年

相关博士学位论文 前10条

1 廖强;约束独立分量和多小波分析在滚动轴承故障诊断中的应用[D];电子科技大学;2016年

2 曾鸣;基于凸包的模式识别方法及其在滚动轴承故障诊断中的应用[D];湖南大学;2016年

3 王聪;基于稀疏表达的机械信号处理方法及其在滚动轴承故障诊新中的应用研究[D];中国科学技术大学;2017年

4 于江林;滚动轴承故障的非接触声学检测信号特性及重构技术研究[D];大庆石油学院;2009年

5 杨柳松;基于小波分析与神经网络滚动轴承故障诊断方法的研究[D];东北林业大学;2013年

6 从飞云;基于滑移向量序列奇异值分解的滚动轴承故障诊断研究[D];上海交通大学;2012年

7 赵协广;基于小波变换和经验模态分解的滚动轴承故障诊断方法研究[D];山东科技大学;2009年

8 侯者非;强噪声背景下滚动轴承故障诊断的关键技术研究[D];武汉理工大学;2010年

9 郭艳平;面向风力发电机组齿轮箱滚动轴承故障诊断的理论与方法研究[D];浙江大学;2012年

10 Ao Hung Linh(池雄岭);基于化学反应优化算法和支持向量机的滚动轴承故障诊断方法研究[D];湖南大学;2014年

相关硕士学位论文 前10条

1 李男;基于LMD样本熵和贝叶斯网络的滚动轴承故障诊断方法[D];燕山大学;2015年

2 李玉奎;基于非平稳信号分析的滚动轴承故障诊断研究[D];燕山大学;2015年

3 卜勇霞;基于时频分析方法的滚动轴承故障诊断研究[D];昆明理工大学;2015年

4 马宝;基于KICA和LSSVM的滚动轴承故障监测及诊断方法[D];昆明理工大学;2015年

5 王天一;基于正交小波优化阈值降噪方法的滚动轴承故障诊断研究[D];哈尔滨工业大学;2015年

6 宋耀文;基于振动信号分析的滚动轴承故障特征提取与诊断研究[D];中国矿业大学;2015年

7 韩一村;基于多传感器的滚动轴承故障检测研究[D];河南科技大学;2015年

8 王秀娟;基于LMD的谱峭度算法在滚动轴承故障诊断中的应用研究[D];电子科技大学;2014年

9 段永强;局部均值分解法在滚动轴承故障自动诊断中的应用研究[D];电子科技大学;2015年

10 黄宏臣;基于流形学习算法的滚动轴承故障识别研究[D];太原理工大学;2014年



本文编号:2034953

资料下载
论文发表

本文链接:https://www.wllwen.com/jixiegongchenglunwen/2034953.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户daf64***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com