油膜轴承综合试验台系统性能分析与优化研究
本文选题:油膜轴承试验台 + 能量流 ; 参考:《太原科技大学》2017年硕士论文
【摘要】:油膜轴承的试验研究对油膜轴承理论创新与生产技术发展至关重要。我校建立的试验台可以再现生产现场高速重负荷的工作情况,进一步完善了我国对大型油膜轴承的试验验证研究。本试验台拥有独立的供油润滑系统,采用了先进的现场总线技术,实现了设备运行的自动化,且系统稳定可靠,为增强我国油膜轴承的自主研发创新能力提供了有力支撑。为了响应我国绿色节能的战略性方针,以及适应生产技术不断革新的新形势,油膜轴承试验研究的科学性和先进性也应该与时俱进。本文对试验台整个系统进行了能量流分析,科学地评价了试验系统的能量效率,并提出了改进方法;同时对试验系统的物质流通性进行了定性分析,并在此基础上定量地描述了试验系统中各物质流动情况;利用先进控制方法,提高了试验台直流电动机速度控制精度;设计了试验台远程监控系统,建立了远程实验室平台,提高了试验台的智能化水平。其主要研究内容如下:第一,对试验台系统进行了能量流分析。建立了试验系统的能量平衡模型,计算了试验系统中各个环节的能量使用情况,得到了各个子系统的能量效率,并得出整个试验系统的能量效率,通过分析影响试验系统能量利用率的因素,提出改进试验系统的方法。第二,对试验台系统进行了物质流分析。定性分析了试验台运行过程中各物质的流通性,并计算和分析了试验台各物质损耗情况,得出了各物质的消耗强度和物质生产力,有针对性地提出了提高试验台各物质生产力的措施。第三,优化了电机转速控制系统。以试验台电机转速PID控制系统为基础,设计了模糊-PID控制系统,并利用仿真软件Simulink进行了对比分析,使用了编程软件STEP7实现了模糊-PID控制系统在PLC上的应用,提高了速度控制系统的精度,优化了试验台运转性能。第四,利用WinCC组件功能,设计了试验台远程监控系统,实现了试验台的远程客户端访问和移动终端设备访问,并通过网站设计,开发了基于试验台的远程实验室操作平台,提升了试验台的智能化水平。
[Abstract]:The experimental study of oil film bearing is very important to the innovation of oil film bearing theory and the development of production technology. The test bed established by our university can reproduce the working condition of high speed and heavy load in production site, and further improve the test and verification research on large oil film bearing in our country. This test bed has an independent oil supply lubrication system, adopts advanced field bus technology, realizes the automation of equipment operation, and the system is stable and reliable, which provides a strong support for enhancing the independent research and innovation ability of oil film bearing in our country. In order to respond to the strategic policy of green energy saving in our country and to adapt to the new situation of continuous innovation of production technology, the scientific nature and advanced nature of oil film bearing test research should also keep pace with the times. In this paper, the energy flow analysis of the whole test system is carried out, the energy efficiency of the test system is scientifically evaluated, and the improved method is put forward, at the same time, the material circulation of the test system is qualitatively analyzed. On this basis, the material flow in the test system is described quantitatively, the speed control precision of DC motor is improved by using advanced control method, the remote monitoring system is designed, and the remote laboratory platform is established. The intelligence level of the test bed is improved. The main research contents are as follows: first, the energy flow analysis of the test-bed system is carried out. The energy balance model of the test system is established, the energy utilization of each link in the test system is calculated, the energy efficiency of each subsystem is obtained, and the energy efficiency of the whole test system is obtained. Based on the analysis of the factors affecting the energy utilization of the test system, the method of improving the test system is put forward. Secondly, the material flow analysis of the test bed system is carried out. This paper qualitatively analyzes the circulation of each substance in the running process of the test bed, calculates and analyzes the material loss of the test bed, and obtains the consumption intensity and the material productivity of each substance. The measures to improve the material productivity of the test bench are put forward. Thirdly, the motor speed control system is optimized. The fuzzy pid control system is designed based on the pid control system of the motor speed of the test-bed. The simulation software Simulink is used to compare and analyze the fuzzy pid control system. The application of the fuzzy pid control system on PLC is realized by using the programming software STEP7. The accuracy of the speed control system is improved and the operating performance of the test bed is optimized. Fourthly, the remote monitoring system of the test bed is designed by using WinCC component function. The remote client access and mobile terminal equipment access are realized, and the remote laboratory operating platform based on the test bed is developed through the design of the website. The intelligence level of the test bench is improved.
【学位授予单位】:太原科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH133.3
【参考文献】
相关期刊论文 前10条
1 贺为婷;乔阳;;模糊自整定PID控制的仿真分析[J];山东工业技术;2015年01期
2 马立新;王建梅;薛亚文;唐亮;;油膜轴承试验台负载特性模型的建立与计算[J];轴承;2014年11期
3 唐华;;基于物质流分析法对江西省生态效率的评价[J];绿色科技;2014年07期
4 马立新;王建梅;薛亚文;唐亮;;大型油膜轴承综合试验台监控系统研制[J];轴承;2013年10期
5 刘飞;刘霜;;机床服役过程机电主传动系统的时段能量模型[J];机械工程学报;2012年21期
6 薛亚文;王建梅;陶德峰;王尧;康建峰;;轧机动压油膜轴承润滑油量的计算[J];太原科技大学学报;2012年05期
7 甄靓;;商务网站的设计与构建[J];电子世界;2012年10期
8 ;Estimation of Fine Dust Particles Distribution in Machining Workshop Based on COwZ Model[J];Chinese Journal of Mechanical Engineering;2011年03期
9 钱翌;杨立杰;段克;;青岛市环境-经济系统的物质流分析[J];青岛科技大学学报(社会科学版);2009年01期
10 陶劲松;尹勇军;刘焕彬;李继庚;李玉刚;蒋鹏;李小红;过盘兴;;基于“三环节”能量模型的造纸厂能量系统诊断研究[J];造纸科学与技术;2008年06期
相关博士学位论文 前1条
1 龙妍;基于物质流、能量流与信息流协同的大系统研究[D];华中科技大学;2009年
相关硕士学位论文 前4条
1 马立新;轧机油膜轴承试验台系统性能优化研究[D];太原科技大学;2014年
2 白大鹏;滑动轴承试验台结构设计[D];哈尔滨工程大学;2009年
3 张多利;大型轴承试验台研制及试验研究[D];哈尔滨工程大学;2008年
4 刘浩;滑动轴承试验装置开发与油膜压力测量[D];山东大学;2007年
,本文编号:2045980
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2045980.html