基于超声波技术的径向滑动轴承润滑液工作状态研究
本文选题:超声波 + 径向滑动轴承 ; 参考:《长安大学》2015年博士论文
【摘要】:流体润滑油膜对于减小相对运动机件之间的摩擦和磨损具有重要的作用。油膜厚度过薄会导致机件表面的相互接触,进而产生较高摩擦和磨损,油膜厚度过大又会导致不必要的搅油能量损失。为了保证相对运动的机件能得到良好的润滑,同时又不损失过多的能量,需要确保润滑油膜的厚度。测量润滑油膜的厚度不仅有助于改进机件的设计,而且掌握润滑油膜的工作状态。润滑油膜的破裂会导致润滑失效,进而导致机件的毁坏,所以对润滑油膜厚度的测量是非常有必要的。超声波是一种非破坏性的、安全以及便携的技术。由于成本的降低和脉冲能力以及数字化技术的普及,超声波设备的使用越来越广泛。由于超声波的特性大部分都取决于传播介质,这使超声波技术非常适于用来检测润滑油膜的厚度。此技术通过检测由润滑油膜反射的一部分声波就可测量油膜厚度。但是由于在试验台搭建、超声波使用及其准确度验证等方面存在许多困难,此技术目前在油膜厚度检测方面的使用还有很多工作要做。本文利用高频超声波对径向滑动轴承内润滑液的油膜厚度和气穴效应进行了研究。并简化了测量系统,降低了测量成本,提高了超声波技术的便捷性,为实现径向滑动轴承油膜厚度的车载测量打下了坚实的基础,为后人的研究提供了理论依据,也为轴承的设计和特殊使用条件下润滑剂的选用提供了理论参考。最重要的是,掌握了润滑状态可以调节维护修理的周期,预防由于润滑失效导致的经济损失。本文首先根据所测目标是径向滑动轴承的瞬时油膜厚度而选择将超声波传感器安装在轴颈内部,与轴颈一起旋转;然后通过对径向滑动轴承模拟仪的形状和尺寸进行分析,选择了单独的压电元件作为超声波传感器进行超声波信号的发射和接收;在此基础上根据压电元件与油膜之间的距离选择了压电元件的频率;随后根据压电元件在工作时需要进行高速旋转的特性选择了合适的滑环解决与电源之间的电路连接问题;利用Labview软件编写程序对试验系统进行控制,并在其中运用弹簧模型利用反射率计算油膜厚度;设计了不同的试验台对弹簧模型中的参数进行测量;设计了特定的试验台考察温度对压电元件的影响;搭建试验台并在验证其可靠性的基础上对载荷、转速和温度的变化对径向滑动轴承的瞬时油膜厚度和气穴效应的影响进行了测量,并对可能导致润滑失效的工作条件进行了预测。本文的结果显示,超声波技术是一种十分可靠的油膜润滑状态测量技术,但是由于超声波波长限制,本文所开发的利用超声波技术和弹簧模型相结合测量油膜厚度的技术,只适用于微米级别的油膜厚度,且温度的升高会导致超声波传感器产生的超声脉冲的能量呈线性降低。径向滑动轴承的载荷变大、温度升高、转速降低都会导致最小油膜厚度的减小、轴颈与轴瓦上加载点位置之间的距离越来越近以及气穴效应的增大。
[Abstract]:Fluid lubricating oil film plays an important role in reducing friction and wear between the relatively moving parts. Too thin film thickness will lead to contact on the surface of the machine, resulting in higher friction and wear. Too much oil film thickness will lead to unnecessary oil stirring energy loss. In order to ensure the relative motion of the machine can be well run. It needs to ensure the thickness of the lubricating oil film without losing too much energy at the same time. Measuring the thickness of the lubricating film not only helps to improve the design of the machine parts, but also grasps the working state of the lubricating film. The rupture of the lubricating oil film will lead to the failure of the lubrication and cause the destruction of the machine parts, so it is very necessary to measure the thickness of the lubricating oil film. Yes. Ultrasonic is a non destructive, safe and portable technology. The use of ultrasonic equipment is more and more widely used because of cost reduction, pulse ability and the popularization of digital technology. The characteristics of ultrasonic wave are mostly dependent on Yu Chuanbo medium, which makes ultrasonic technology very suitable for detecting the thickness of lubricating oil film. This technique can measure the thickness of the oil film by detecting a part of the acoustic wave reflected from the lubricating oil film. But because there are many difficulties in the use of ultrasonic and its accuracy verification in the test bench, there are many work to do in the field of oil film thickness detection. The oil film thickness and cavitation effect of the inner lubricating fluid are studied, and the measurement system is simplified, the measurement cost is reduced, the convenience of the ultrasonic technology is improved, the solid foundation for the vehicle measurement of the oil film thickness of the radial journal bearing is laid down, the theoretical basis is provided for the research of the later people, and the design and special of the bearings are also provided. A theoretical reference is provided for the selection of lubricants under special conditions. The most important thing is that the lubrication state can be controlled to maintain the repair period and prevent the economic loss due to lubrication failure. Firstly, the ultrasonic sensor is chosen to be installed in the neck of the shaft according to the instantaneous oil film thickness of the radial sliding bearing. Through the analysis of the shape and size of the radial journal bearing simulator, a single piezoelectric element is selected as the ultrasonic sensor to transmit and receive the ultrasonic signal. On this basis, the frequency of the piezoelectric element is selected according to the distance between the piezoelectric element and the oil film; then the piezoelectric element is based on the piezoelectric element. In the work, the characteristic of high speed rotation is needed to choose the suitable slip ring to solve the circuit connection between the power and the power supply. The test system is controlled by Labview software program, and the spring model is used to calculate the oil film thickness by using the reflectivity, and the parameters of the spring model are designed by different test rig. The influence of the temperature on the piezoelectric element is designed and the test bench is built to measure the influence of the load, speed and temperature on the instantaneous oil film thickness and cavitation effect of the radial sliding bearing on the basis of its reliability, and the working conditions that can lead to the failure of the lubrication are predicted. The results of this paper show that ultrasonic technology is a very reliable technique for measuring the state of oil film lubrication. However, because of the limitation of ultrasonic wave length, the technique used in this paper to measure the thickness of oil film by combining the ultrasonic technology with the spring model is only suitable for the thickness of the oil film in the micron level, and the increase of temperature will lead to ultrasonic sensing. The energy of the ultrasonic pulse produced by the device decreases linearly. The load of the radial journal bearing becomes larger, the temperature increases and the speed decreases, which will result in the decrease of the minimum oil film thickness, the distance between the position of the load point on the shaft neck and the axle bush, and the increase of the cavitation effect.
【学位授予单位】:长安大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TH133.31;TB553
【相似文献】
相关期刊论文 前10条
1 徐龙祥,朱均;径向滑动轴承性能计算方法的改进[J];汽轮机技术;1991年06期
2 邓圭玲,段吉安,朱均;计算径向滑动轴承无量纲膜厚及其偏导的统一公式[J];矿山机械;2000年08期
3 吴承伟;马国军;;复合表面径向滑动轴承的概念和性能预报[J];计算力学学报;2007年01期
4 王基;郑建华;谢沛霖;;镶嵌式复合径向滑动轴承的实验研究[J];润滑与密封;2007年07期
5 王丽萍;乔广;郑铁生;;可倾瓦径向滑动轴承完整动特性系数的分析模型[J];计算力学学报;2008年06期
6 贾小俊;范世东;;考虑轴颈倾斜的径向滑动轴承动态特性研究[J];船海工程;2008年05期
7 黎伟;陈志祥;汪久根;;轴线偏斜对多瓦径向滑动轴承热润滑性能的影响[J];润滑与密封;2011年09期
8 黎伟;陈志祥;汪久根;;多瓦可倾瓦径向滑动轴承热润滑性能分析[J];润滑与密封;2011年12期
9 方静辉;汪久根;陈志祥;;卧式水电机组用径向滑动轴承热弹流特性分析[J];润滑与密封;2012年01期
10 朱均,周进良,周长新;可倾瓦径向滑动轴承性能分析[J];西安交通大学学报;1979年04期
相关会议论文 前10条
1 朱均;周进良;周长新;;可倾瓦径向滑动轴承性能分析[A];第二次全国摩擦磨损润滑学术会议论文集[C];1979年
2 丘大谋;芈振南;林钧;;关于可倾瓦径向滑动轴承油膜动力特性的讨论[A];第二次全国摩擦磨损润滑学术会议论文集[C];1979年
3 朱均;;关于可倾瓦径向滑动轴承稳定性的探讨(一)[A];摩擦学第三届全国学术交流会论文集流体润滑部分(Ⅰ)[C];1982年
4 杨晟博;杨金福;;径向滑动轴承油膜流场压力分布的解析分析[A];第八届全国转子动力学学术讨论会论文集[C];2008年
5 徐海波;朱均;;径向滑动轴承中流体从层流到紊流的流动分析和转变判据研究[A];第五届全国摩擦学学术会议论文集(下册)[C];1992年
6 王小静;苏荭;陈晓阳;张直明;;动载径向滑动轴承油膜空穴研究[A];第七届中国轧机油膜轴承技术研讨会论文集[C];2004年
7 胡元中;黄亭亭;;各种工作因素影响下,可倾瓦块径向滑动轴承动力特性系数的分析及计算[A];摩擦学第三届全国学术交流会论文集流体润滑部分(Ⅰ)[C];1982年
8 孙江龙;刘彦强;;径向滑动轴承动压润滑分析[A];2008年船舶水动力学学术会议暨中国船舶学术界进入ITTC30周年纪念会论文集[C];2008年
9 王伟;刘小君;刘q;刘勇;王召唤;;颗粒流润滑径向滑动轴承从起动到稳定的动态过程研究[A];第十一届全国摩擦学大会论文集[C];2013年
10 钟海权;;250吨级低速重载径向滑动轴承研究[A];加入WTO和中国科技与可持续发展——挑战与机遇、责任和对策(上册)[C];2002年
相关博士学位论文 前1条
1 于唯;基于超声波技术的径向滑动轴承润滑液工作状态研究[D];长安大学;2015年
相关硕士学位论文 前10条
1 彭龙龙;径向滑动轴承层流与湍流润滑特性研究[D];浙江大学;2016年
2 朱光;高速径向滑动轴承热力学分析[D];郑州大学;2016年
3 孟繁娟;液体动压径向滑动轴承实验台仿真软件的研制[D];北京交通大学;2008年
4 黎伟;多瓦可倾瓦径向滑动轴承热润滑性能的研究[D];浙江大学;2012年
5 余四平;高速离心泵径向滑动轴承承载能力分析[D];南京林业大学;2012年
6 于杨冰;基于数据库的径向滑动轴承—转子系统非线性动力学行为研究[D];西安理工大学;2010年
7 帅旗;动静载径向滑动轴承特性参数计算及仿真[D];西南交通大学;2002年
8 余谱;水轮机径向滑动轴承润滑特性研究[D];浙江大学;2014年
9 王龙刚;具有油槽的径向滑动轴承实验台仿真软件的研制[D];北京交通大学;2008年
10 张兴州;考虑表面形貌的径向滑动轴承润滑分析[D];青岛大学;2015年
,本文编号:2062979
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2062979.html