RV减速器滚针轴承的摩擦学分析
发布时间:2018-07-09 18:45
本文选题:RV减速器 + 滚针轴承 ; 参考:《浙江大学》2017年硕士论文
【摘要】:工业机器人正在被广泛使用,来代替人完成各种重复劳动和特殊工作环境的劳动,正逐渐改变着人类社会。我国工业机器人市场规模巨大,但一直被国外机器人公司垄断,实现工业机器人国产化是国家的一项重要战略目标。研究机器人用RV减速器是实现工业机器人国产化中最重要也最难的部分,在RV减速器中,转臂滚针轴承的工作性能和使用寿命严重制约了整个减速器的可靠性。本文在滚动轴承润滑理论研究的基础上,针对机器人用RV减速器滚针轴承的润滑特性进行了研究,通过建模并用MATLAB编程求解了滚针轴承润滑膜的压力和膜厚,轴承表面应力场等,对轴承的性能进行了定性和定量的分析。本文第一部分阐述了 RV减速器滚针轴承摩擦学分析的工程意义,总结了线接触摩擦副弹流润滑理论研究和实验研究的国内外进展,归纳了常用的膜厚公式和弹流模型的求解方法。第二部分建立了线接触表面弹性变形求解模型,分别考虑了五种主流的弹性变形计算方法,求解了在Hertz压力分布、三角形压力分布和均匀压力分布下的线接触表面弹性变形后的膜厚,对结果加以比较,对五种方法进行了评判。第三部分建立了考虑表面波纹度和凹坑的滚针轴承接触弹流润滑模型,利用MATLAB编程分别求解了轻载波纹度和高载波纹度不同波幅、不同波长,轻载和高载入口区、接触中心、出口区不同深度凹坑的情况下的滚针轴承润滑膜厚度、压力分布和轴承表层Mises应力场,探讨了表层最大应力出现的位置及其大小,并进行了对比分析,得出了波纹度和凹坑对滚针轴承润滑的影响。第四部分建立了基于Ostwald本构模型的脂润滑控制方程,求解了脂润滑条件下的润滑膜厚度、压力分布和轴承表层Mises应力场。分别探讨了不同流变指数、不同载荷、不同卷吸速度对脂润滑弹流特性的影响。第五部分对全文的主要研究内容进行了总结,指出了本文研究的诸多不足,提出了需要进一步研究的方向。
[Abstract]:Industrial robots are being widely used to replace people to complete all kinds of repetitive work and special work environment, and are gradually changing the human society. The market of industrial robots in China is huge, but it has been monopolized by foreign robotics companies all the time. It is an important strategic goal of our country to realize the localization of industrial robots. The research of RV reducer for robot is the most important and difficult part in realizing the localization of industrial robot. In the RV reducer, the reliability of the whole reducer is seriously restricted by the working performance and service life of the rotary arm needle roller bearing. Based on the theoretical research of rolling bearing lubrication, the lubrication characteristics of needle bearing of RV reducer for robot are studied in this paper. The pressure and film thickness of needle roller bearing lubrication film are solved by modeling and MATLAB programming. The surface stress field of bearing is analyzed qualitatively and quantitatively. In the first part of this paper, the engineering significance of the tribological analysis of needle bearing of RV reducer is expounded, and the progress of theoretical and experimental research on elastohydrodynamic lubrication of linear contact friction pair is summarized. The common formula of film thickness and the method of solving elastohydrodynamic model are summarized. In the second part, the solution model of elastic deformation of linear contact surface is established. Five main methods of elastic deformation calculation are considered, and the Hertz pressure distribution is solved. The film thickness after elastic deformation of linear contact surface under triangular pressure distribution and uniform pressure distribution is compared and five methods are evaluated. In the third part, the contact elastohydrodynamic lubrication model of needle roller bearing considering surface ripple and crater is established, and the contact center is solved by MATLAB programming, including different wave amplitude, different wavelength, light load and high loading port area, and high load port area, respectively. The lubrication film thickness, pressure distribution and Mises stress field of needle roller bearing at different depths in the outlet area are discussed. The position and magnitude of the maximum stress in the surface layer are discussed, and the results are compared and analyzed. The influence of corrugation and pit on the lubrication of needle roller bearing is obtained. In the fourth part, the governing equation of grease lubrication based on Ostwald constitutive model is established, and the thickness of lubrication film, pressure distribution and Mises stress field of the surface layer of bearing are solved under the condition of grease lubrication. The effects of different rheological indexes, different loads and different entrainment speeds on the elastohydrodynamic characteristics of grease lubrication were discussed. The fifth part summarizes the main contents of this paper, points out the shortcomings of this study, and puts forward the direction of further research.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH132.46
【参考文献】
相关期刊论文 前10条
1 何卫东;单丽君;;RV减速器研究现状与展望[J];大连交通大学学报;2016年05期
2 薛虎;许迪初;汪久根;;线接触弹流中弹性变形计算方法对比研究[J];润滑与密封;2016年07期
3 刘海超;郭峰;郭亮;黄柏林;;滑块轴承时变润滑油膜厚度测量系统[J];光电工程;2015年11期
4 黄兴;何文杰;符远翔;;工业机器人精密减速器综述[J];机床与液压;2015年13期
5 张彬彬;王静;;时变线接触热弹性流体动力润滑问题的高精度数值算法[J];润滑与密封;2013年12期
6 王学锋;郭峰;杨沛然;;弹流润滑气穴现象的实验观察[J];自然科学进展;2006年08期
7 王文中,王慧,胡元中;润滑接触中弹性变形的快速数值计算[J];摩擦学学报;2002年05期
8 刘晓玲,杨沛然;有限长滚子线接触热弹流润滑分析[J];摩擦学学报;2002年04期
9 翟文杰,包大勇,,张鹏顺;点接触弹流压力作用下弹性变形的计算[J];哈尔滨工业大学学报;1994年04期
10 陈晓阳,马家驹,全永昕;三维接触压力分布的近似切平面拟合方法[J];浙江大学学报(自然科学版);1994年02期
本文编号:2110312
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2110312.html