当前位置:主页 > 科技论文 > 机电工程论文 >

钹型开槽式阀压电泵的理论与试验研究

发布时间:2018-07-16 17:35
【摘要】:科学技术的发展,MEMS加工制造技术的进步,使得航空航天、生物医学以及精细化学等领域对于微流体传输有了更高的要求,这极大地促进了微泵的发展。以压电材料为驱动部件的压电作动型微泵,具有响应迅速、能量密度大、集成度高和无电磁干扰等特点,得到了国内外众多研究学者的关注。因此,在微化学混合、燃料电池、生物检测、胰岛素注入等领域均有着广泛的应用前景。作为有阀压电泵的核心部件,单向起止阀的可靠性对于整个压电泵的寿命和性能有着至关重要的影响。当压电泵在运行时,单向起止阀的频繁往复运动容易使阀体产生疲劳损伤,且传统悬臂梁式阀体还易导致应力集中,进而加重疲劳受损情况,最终导致阀体失效,有阀压电泵也随之不能正常工作。针对此种情况,本文提出一种钹型开槽式阀体,该阀体由钹型隔栅和钹型开槽膜片所组成,以期能降低阀体所受应力,提高阀体的使用寿命,增加有阀压电泵的运行可靠性,并根据钹型开槽式阀体设计出钹型开槽式阀压电泵。本研究对钹型开槽式阀压电泵及其相关部件所做的研究工作及取得的成果如下:1.基于材料力学等相关原理对钹型开槽式阀压电泵的钹型开槽膜片进行理论推导,建立了钹型开槽膜片开合度与膜片高度的数学表达式,阐明了膜片各个参数对于膜片开合度的影响;建立了钹型开槽式阀压电泵的流量表达式,揭示了振子参数、膜片参数、传输介质参数等与泵流量间的相互关系。2.基于静力分析对钹型开槽膜片和平板开槽膜片进行应力对比,论证了钹型开槽式阀体设计方案的合理性;综合考虑了泵内水体对压电泵的附加质量影响,对钹型开槽式阀压电泵进行了湿模态和谐响应分析,确定了压电泵的工作频率及压电振子的振动形态,为泵流量试验平台的搭建提供了参考。3.基于阀体与流场的耦合作用,构建了钹型开槽式阀压电泵的流固耦合模型,深入分析流固耦合情况下的钹型开槽膜片位移变化以及所受应力大小,探明压电泵内部压力与流场的变化规律,进一步分析钹型开槽式阀压电泵的性能,验证设计方案的可行性。4.使用SLA激光快速成型技术加工了钹型开槽式阀压电泵样机,并搭建了钹型开槽式阀压电泵的输出特性测试平台;对压电振子和压电泵分别进行了振动特性和输出特性测试,获得了不同驱动频率下,振子位移与泵流量曲线;结合流固耦合计算结果,阐述了振子振幅、膜片应力及泵流量这三者间的相互关系,分析结果可为膜片优化工作提供参考。
[Abstract]:With the development of science and technology and the progress of MEMS manufacturing technology, the fields of aerospace, biomedicine and fine chemistry have higher requirements for microfluid transport, which has greatly promoted the development of micropumps. Piezoelectric actuated micropump with piezoelectric material as the driving component has the characteristics of rapid response, high energy density, high integration and no electromagnetic interference, etc., which has attracted the attention of many researchers at home and abroad. Therefore, microchemical mixing, fuel cells, biological detection, insulin injection and other fields have a wide range of applications. As the core component of piezoelectric pump with valve, the reliability of one-way starting and stopping valve plays an important role in the life and performance of piezoelectric pump. When the piezoelectric pump is in operation, the frequent reciprocating movement of the one-way starting and stopping valve will easily cause fatigue damage to the valve body, and the traditional cantilever valve body will also easily lead to stress concentration, which will aggravate the fatigue damage and eventually lead to the failure of the valve body. With the valve pump also can not work properly. In this paper, a cymbal slotted valve body is proposed, which is composed of cymbal diaphragm and cymbal diaphragm in order to reduce the stress on the valve body, improve the service life of the valve body and increase the reliability of the piezoelectric pump with valve. And according to cymbals type slotted valve body design cymbal type slotted valve pressure pump. The research work of cymbals slotted valve piezoelectric pump and its related parts are as follows: 1. Based on the theory of material mechanics, the cymbal slotted diaphragm of cymbal slotted valve piezoelectric pump is derived theoretically, and the mathematical expression of cymbals slotted diaphragm opening degree and diaphragm height is established. The influence of diaphragm parameters on diaphragm opening and closing degree is clarified, the flow expression of cymbal slotted valve piezoelectric pump is established, and the relationship between oscillator parameter, diaphragm parameter, transmission medium parameter and pump flow rate is revealed. Based on static analysis, the stress comparison between cymbal slotted diaphragm and plate slotted diaphragm is carried out, the rationality of cymbal slotted valve body design scheme is demonstrated, and the effect of water body in pump on the additional mass of piezoelectric pump is considered synthetically. The harmonic response of wet mode of cymbal slotted valve piezoelectric pump is analyzed. The frequency of piezoelectric pump and the vibration form of piezoelectric vibrator are determined, which provides a reference for the construction of pump flow test platform. Based on the coupling between valve body and flow field, the fluid-solid coupling model of cymbal slotted valve piezoelectric pump is constructed, and the displacement and stress of cymbal slotted diaphragm under fluid-solid coupling are analyzed. The variation law of internal pressure and flow field of piezoelectric pump is proved, and the performance of cymbal slotted valve piezoelectric pump is further analyzed, and the feasibility of the design scheme is verified. The prototype of cymbal slotted valve piezoelectric pump was fabricated by SLA laser rapid prototyping technology, and the output characteristic test platform of cymbal slotted valve piezoelectric pump was built, and the vibration and output characteristics of piezoelectric vibrator and piezoelectric pump were tested respectively. The displacement curves of the vibrator and the flow rate of the pump are obtained at different driving frequencies, and the relationship among the vibrator amplitude, diaphragm stress and pump flow rate is expounded in combination with the fluid-solid coupling calculation results. The analysis results can provide a reference for the optimization of the diaphragm.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH38

【参考文献】

相关期刊论文 前10条

1 王颖;张建辉;刘瑞峰;;螺旋线形阀压电泵的理论与试验研究[J];机械工程学报;2016年20期

2 黄丹;马玉婷;潘巧生;任艺军;冯志华;;中间固定式双压电晶片大流量压电泵的研究[J];压电与声光;2016年03期

3 张蕊华;张建辉;朱银法;胡笑奇;;三棱柱阻流体无阀压电泵的设计与试验[J];光学精密工程;2016年02期

4 曾平;李立安;胥锋;刘国君;温建明;;无阀压电泵的流固耦合仿真及试验验证[J];光学精密工程;2016年01期

5 张立敏;王桂文;董景石;王洪臣;;Y型双入水流道双出水流道无阀压电泵研究[J];压电与声光;2015年05期

6 纪晶;徐安坡;张建辉;;零迎流角半球缺群无阀压电泵流阻与流量特性研究[J];农业机械学报;2015年09期

7 徐莹;胡正添;郭淼;;基于微生物代谢成分的电化学多参数检测平台微泵设计[J];传感技术学报;2015年01期

8 黄俊;张建辉;王守印;;类分形Y形分叉流管无阀压电泵的流阻分析[J];机械工程学报;2014年16期

9 柳瑞锋;黄嵘;周相荣;王强;;船体低阶湿模态计算方法对比研究[J];船舶工程;2014年04期

10 邓知森;马玉婷;冯志华;;脉动离心隔膜压电泵的原理与试验[J];西安交通大学学报;2014年08期

相关博士学位论文 前1条

1 姜德龙;多腔串联压电泵结构设计及关键技术研究[D];吉林大学;2013年

相关硕士学位论文 前4条

1 王利平;基于压电泵驱动变后缘弯度机翼结构设计[D];哈尔滨工业大学;2016年

2 潘笛站;双腔压电胰岛素泵的设计理论与关键技术研究[D];吉林大学;2013年

3 吴迪;液体混合用多入口压电泵的研究[D];吉林大学;2012年

4 孙晓锋;压电泵驱动的电脑芯片水冷系统理论与实验研究[D];吉林大学;2005年



本文编号:2127117

资料下载
论文发表

本文链接:https://www.wllwen.com/jixiegongchenglunwen/2127117.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f1e95***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com