四自由度载人高逼真运动模拟平台的研究
[Abstract]:The motion simulation platform is a ground simulation equipment used to simulate the dynamic feelings of drivers in aircraft and other vehicles. Drivers on the simulation platform can feel the similar instantaneous overload and attitude change during the real flight. However, the traditional parallel motion simulation platform with six degrees of freedom and its classical washing out algorithm are difficult to achieve high fidelity simulation of real instantaneous overload and attitude change. Therefore, based on the goal of realizing high fidelity dynamic simulation, the design of the mechanical structure of a new motion simulation platform is completed, and a series of problems such as high-fidelity dynamic simulation algorithm and motion simulation platform control system are studied. A motion simulation platform with four degrees of freedom in series is proposed. Based on the parameters of the design protocol, the mechanical structure design and optimization of motion simulation platform, dynamic simulation analysis, motor torque check, finite element simulation analysis and static strength check are completed by using SolidworksAdamsn Workbench ANSYS and other softwares. The dynamic simulation analysis and dynamic strength checking of rigid-flexible coupling ensure the dynamic strength of key components while pursuing the lightweight of the simulation platform. Dynamic simulation algorithm has a decisive effect on simulation fidelity of motion simulation platform. Based on the mathematical model of human vestibular organ, an objective evaluation system of the fidelity of the dynamic simulation algorithm is established, which provides the basis for adjusting the filter parameters. The composition of each link in the dynamic simulation algorithm is analyzed in detail, and the form of transfer function and filter parameters are selected and optimized. Considering the shortcomings of dynamic simulation algorithm with fixed parameters, such as inaccurate description of dynamic detail information, Based on the fuzzy control theory, a new fuzzy dynamic simulation algorithm is designed, which can adjust the filter parameters of the dynamic simulation algorithm in real time according to the frequency of the input signal. With STM32 microcontroller as the core, a rich peripheral hardware circuit is designed. According to the control requirements, the software part of the control system is designed, the motor position control function is realized, and the acceleration and deceleration curve of the motor is optimized. Combined with serial communication, the motion control function of each axis motor of the motion simulation platform is completed by the host computer through the serial port. Using Kalman filter to process the original attitude data of MPU6050, the real-time motion attitude data of motion simulation platform with higher dynamic precision and less noise interference are obtained, which lays a foundation for closed-loop evaluation of control algorithm performance. The physical prototype of the motion simulation platform is built and the PCB board of the control system is made. Taking automobile driving as an example, the classical washing out algorithm and the new fuzzy dynamic simulation algorithm are used to test the linear acceleration and deceleration, the curve acceleration and deceleration, and the comprehensive road condition under different road conditions. By comparing with the real driving motion data, the results show that the new fuzzy dynamic simulation algorithm is more accurate than the classical washing out algorithm in describing the dynamic detail signal, and the amplitude difference and phase difference of the output motion are smaller. A higher fidelity dynamic simulation is realized.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH122
【参考文献】
相关期刊论文 前10条
1 高艳辉;肖前贵;胡寿松;宋晓龙;;飞行模拟器发展中的关键技术[J];计算机测量与控制;2014年02期
2 王勇;刘晖;;飞行模拟器体感模拟的仿真研究[J];信息技术;2012年05期
3 张玲;陈宁;姬云;朱江;;飞行模拟器飞行仿真系统集成方法研究[J];飞行力学;2010年03期
4 刘广达;黄其涛;韩俊伟;;研究用飞行模拟器点对点采集系统[J];沈阳工业大学学报;2010年02期
5 王小亮;李立;张卫华;;列车驾驶模拟器模糊自适应洗出算法研究[J];铁道学报;2010年02期
6 蔚彪;刘红军;;飞行模拟训练经济性研究[J];长春理工大学学报(高教版);2009年04期
7 魏中许;;民航飞行人力资本投资失衡问题分析[J];交通企业管理;2009年01期
8 叶正茂;张辉;张晋;韩俊伟;;飞行模拟器的洗出算法研究[J];机床与液压;2006年06期
9 何其昌,范秀敏,陈聪,马登哲;交互式自行车模拟器系统关键技术[J];上海交通大学学报;2005年09期
10 吴博,吴盛林,董彦良,袁立鹏;水陆坦克运动模拟洗出滤波算法设计[J];南京理工大学学报(自然科学版);2005年02期
相关重要报纸文章 前1条
1 唐贤平;盛利;;高性能载人离心机逼真模拟多种战机飞行[N];科技日报;2015年
相关博士学位论文 前6条
1 高健;飞行模拟器动感模拟系统逼真度研究[D];哈尔滨工业大学;2013年
2 黎建军;免Z轴旋转洗出的6-RSPS模拟器平台若干关键技术研究[D];浙江大学;2013年
3 杨宇;飞行模拟器动感模拟关键技术研究[D];哈尔滨工业大学;2010年
4 栾志博;飞行模拟器数字飞行控制系统建模与辅助训练的实现研究[D];哈尔滨工业大学;2010年
5 王小亮;高速列车驾驶仿真器动感模拟系统研究[D];西南交通大学;2009年
6 王辉;飞行模拟器操纵负荷系统关键技术及原理样机研制[D];天津大学;2007年
相关硕士学位论文 前9条
1 汤文;二自由度飞行姿态模拟器控制系统设计[D];哈尔滨工业大学;2015年
2 王申;动感飞行游戏中的运动平滑处理技术与虚拟飞行仿真技术的研究[D];电子科技大学;2015年
3 师晓芳;Stewart平台车辆模拟器洗出算法研究[D];北京理工大学;2015年
4 肖慧琼;六自由度平台体感算法研究[D];北京交通大学;2014年
5 刘烨磊;新型飞行模拟器体感模拟与控制算法研究[D];北京交通大学;2014年
6 霍电辉;新型三自由度动感模拟平台的研发[D];太原科技大学;2013年
7 赵阳;船舶姿态测量与运动模拟[D];大连海事大学;2011年
8 樊军;训练型飞行模拟器系统设计及仿真研究[D];西北工业大学;2007年
9 陈志雄;列车驾驶模拟器体感模拟的仿真研究[D];西南交通大学;2006年
,本文编号:2158407
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2158407.html