几类碰撞振动系统的分岔控制研究
[Abstract]:Collision vibration is a very common phenomenon in the field of mechanical engineering. On the one hand, due to the inherent discontinuity of the collision vibration system, complex bifurcation and chaos and other dynamic behaviors occur in the system. This nonlinear behavior bias is also one of the reasons leading to the instability or structural damage of the system. In engineering, it is usually active or through control. Force the system to avoid, delay, or eliminate this bifurcation phenomenon. On the other hand, for some production purposes, people begin to pay attention to how to actively utilize the nonlinear characteristics of the bifurcation to achieve the desired bifurcation characteristics by active design or control. Corresponding control methods are analyzed in detail for various kinds of codimension bifurcations, codimension bifurcations, edge-rubbing nonsmooth bifurcations and degenerate Neimark-Sacker bifurcations of a class of two-degree-of-freedom impact vibration systems. In this paper, the quasi-periodic collision design and bifurcation inverse control of periodic collision motion of an inertial impact-vibration blasting machine are studied. A two-parameter domain diagram of Neimark-Sacker bifurcation is obtained, and a stable quasi-periodic impact vibration is designed by choosing the appropriate system parameters with the central manifold-normal method. In this paper, a linear feedback control method is developed. The robust control parameter region of the system is obtained by using the explicit periodic doubling bifurcation critical criterion, and the stability of the doubling bifurcation solution is further analyzed by using the central manifold-normal method. The quasi-periodic collision motion of a three-degree-of-freedom high-dimensional two-sided collision vibration system with clearance is studied. The inverse control problems of the Neimark-Sacker bifurcation, the Pitchfork bifurcation and the Hopf-Hopf interacting bifurcation of the periodic collision motion are studied. The periodic solution of collision and the six-dimensional Poincare mapping are established. Generally, the eigenvalues of the corresponding Jacobian matrices of the six-dimensional mapping have no analytic expression. This makes the classical critical bifurcation criterion described by the eigenvalue properties have great limitation in determining the control gain. To overcome this limitation, the eigenvalue fraction of the six-dimensional mapping is given. The explicit critical criteria for the distribution condition, transversal condition and non-resonance condition are equivalent to the classical bifurcation criteria, but do not depend on the direct calculation of the eigenvalues of Jacobian matrices. Finally, based on the established criteria, the Poincar maps Neimark-Sacker scores of high-dimensional collision systems are achieved at specified parameters by using feedback control method. Bifurcation, Pitchfork bifurcation and Hopf-Hopf interacting bifurcation anti-control are studied. 3. Boundary-rubbing bifurcation of a two-degree-of-freedom vibration system with clearance impact is studied and its dynamic behavior is investigated experimentally. Based on the stability criterion, the stability of the rubbed track is further verified. An experimental platform of a two-degree-of-freedom impact vibration system with clearances is designed and constructed. The different clearance distances between the oscillator and the baffle plate are selected and the stability of the rubbed track is further verified. By adjusting the excitation frequency of the exciter, the experimental results reveal various periodic motions, edge-rubbing bifurcation phenomena and nonlinear dynamical behaviors of chaotic motions of the impact vibration system. 4. The anti-control problem of degenerate Neimark-Sacker bifurcation for a class of extended H_ non maps is studied. The linear control is obtained by using the explicit Neimark-Sacker bifurcation critical criterion. The control system of high-dimensional mapping is simplified to a two-dimensional planar mapping by the central manifold-normal method. Finally, a polynomial function nonlinear feedback controller is designed by using the degenerate Neimark-Sacker bifurcation theory of two-dimensional planar mapping proposed by Chenciner, and the degenerate Neimark-Sacker bifurcation of the system is realized actively. The correctness of theoretical analysis is verified by numerical simulation.
【学位授予单位】:湖南大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TH113.1
【相似文献】
相关期刊论文 前10条
1 俞翔;杨庆超;杨爱波;李志兴;;碰撞振动系统动力学分析[J];武汉理工大学学报(交通科学与工程版);2012年02期
2 谢建华,文桂林,肖建;两自由度碰撞振动系统分叉参数的确定[J];振动工程学报;2001年03期
3 李飞;丁旺才;;多约束碰撞振动系统的粘滞运动分析[J];振动与冲击;2010年05期
4 刘艳云;徐伟;王亮;;多自由度碰撞振动系统的位置控制方法研究[J];科学技术与工程;2012年28期
5 舒仲周;谢建华;;碰撞振动的稳定性[J];西南交通大学学报;1985年03期
6 刘艳云;徐伟;黄冬梅;王亮;;双边约束的多自由度碰撞振动系统的控制方法[J];火力与指挥控制;2013年11期
7 古志明;王树国;杨昊;;一类双自由度碰撞振动系统的分岔与混沌分析[J];兰州交通大学学报;2012年01期
8 张继业,杨翊仁,曾京;单自由度自治系统的碰撞振动分析[J];振动与冲击;1998年03期
9 唐华平,郑吉兵;碰撞振动系统中两种混沌门槛值的判据[J];振动.测试与诊断;1999年02期
10 姜春霞;边红丽;赵琳燕;侍玉青;;一类摩擦碰撞振动系统的周期振动特性研究[J];兰州交通大学学报;2013年06期
相关会议论文 前10条
1 金栋平;胡海岩;;随机碰撞振动的映射[A];钱学森技术科学思想与力学论文集[C];2001年
2 韩维;胡海岩;金栋平;侯志强;;斜碰撞振动研究的若干进展[A];首届全国航空航天领域中的力学问题学术研讨会论文集(下册)[C];2004年
3 金栋平;韩维;胡海岩;;两自由度斜碰撞振动系统的理论和实验研究[A];中国力学学会学术大会'2005论文摘要集(上)[C];2005年
4 张有强;王伟;丁旺才;;单自由度摩擦碰撞振动系统的动力学分析[A];第21届全国结构工程学术会议论文集第Ⅲ册[C];2012年
5 乐源;谢建华;;对称性碰撞振动系统的余维二分岔[A];第六届全国动力学与控制青年学者学术研讨会论文摘要集[C];2012年
6 乐源;谢建华;;具有双侧约束的多自由度碰撞振动系统动力学行为研究进展[A];第九届全国动力学与控制学术会议会议手册[C];2012年
7 吴禹;朱位秋;;泊松白噪声激励的多自由度碰撞振动系统的平稳响应[A];第九届全国振动理论及应用学术会议论文摘要集[C];2007年
8 韩维;胡海岩;金栋平;侯志强;;双摆与单侧刚性约束面之间的斜碰撞振动[A];第七届全国非线性动力学学术会议和第九届全国非线性振动学术会议论文集[C];2004年
9 肖化q,
本文编号:2224008
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2224008.html