基于LabVIEW的轴承和齿轮故障诊断系统设计
[Abstract]:The continuous improvement of automation level increases the complexity of mechanical equipment. Rolling bearings and gears are indispensable devices in mechanical equipment. The failure of rolling bearings and gears will cause great losses in production and endanger the personal safety of operators more easily. Therefore, it is of great practical significance to study an effective fault diagnosis system for bearing and gear. Based on the time-domain characteristic analysis of bearing and gear fault signals, it is found that the kurtosis factor, peak factor, margin factor, waveform factor in dimensionless parameters and the root mean square in dimensionless parameters are found in this paper. The pulse factor is sensitive to the fault signal, so these parameters can be used as the time domain characteristic parameters of the rolling bearing and gear. Through Fourier transform and self-power spectrum analysis of the fault signal, the frequency range of the natural frequency and the edge frequency of the fault signal can be determined, which provides the basis for the subsequent filtering and the extraction of the characteristic frequency. For non-stationary vibration signal, time-frequency analysis is an effective means to process the signal. Therefore, this paper applies the method of wavelet packet resonance demodulation to decompose the fault signal, select the low frequency wavelet packet coefficient to reconstruct, and analyze the resonance demodulation of the reconstructed signal. The experimental results show that the method can find the characteristic frequency more accurately. At the same time, BP neural network is used for fault diagnosis. The time domain feature and fault feature frequency of the extracted fault signal are taken as the input of the neural network to identify and determine the fault types of bearing and gear automatically. Experiments show that the method is effective. A rotating machinery fault diagnosis system based on LabVIEW virtual instrument technology is developed in this paper. The diagnosis system mainly includes signal playback module, time domain feature extraction module, frequency domain feature analysis module, resonance demodulation feature extraction module based on wavelet packet and fault diagnosis system module based on BP neural network. The system can identify and diagnose fault signals, and has practicability and portability. The accuracy and stability of the fault diagnosis system are verified by experiments.
【学位授予单位】:东北石油大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH133.3;TH132.41
【参考文献】
相关期刊论文 前10条
1 喻洋洋;周凤星;严保康;;基于LabVIEW的滚动轴承故障诊断系统[J];仪表技术与传感器;2016年03期
2 唐立力;吕福起;;基于遗传算法的BP神经网络滚动轴承故障诊断[J];机械设计与制造工程;2015年03期
3 王焕跃;;基于LabVIEW的滚动轴承故障智能诊断系统[J];价值工程;2014年35期
4 郭天宇;代中华;张志涛;范新刚;;基于LabVIEW平台的信号实时采集与处理系统[J];声学技术;2014年06期
5 陈向民;于德介;李蓉;;齿轮箱复合故障振动信号的形态分量分析[J];机械工程学报;2014年03期
6 姜涛;袁胜发;;基于改进小波神经网络的滚动轴承故障诊断[J];华中农业大学学报;2014年01期
7 周桂平;王宏;;小波包与Hilbert分析法在旋转设备故障诊断中的应用[J];组合机床与自动化加工技术;2012年10期
8 郝刚;潘宏侠;;小波包降噪与HHT在齿轮箱滚动轴承中的故障诊断[J];矿山机械;2012年10期
9 李学东;张云;马晓莉;;基于振动分析的滚动轴承故障诊断系统设计[J];仪表技术与传感器;2012年08期
10 林近山;陈前;;基于非平稳时间序列双标度指数特征的齿轮箱故障诊断[J];机械工程学报;2012年13期
相关博士学位论文 前3条
1 王金玉;抽油机齿轮箱故障诊断系统的研究[D];东北石油大学;2015年
2 张超;基于自适应振动信号处理的旋转机械故障诊断研究[D];西安电子科技大学;2012年
3 孟涛;齿轮与滚动轴承故障的振动分析与诊断[D];西北工业大学;2003年
相关硕士学位论文 前6条
1 胡二猛;基于LabVIEW的齿轮箱故障诊断系统研究[D];南京信息工程大学;2016年
2 赵鹏飞;基于LabVIEW的齿轮故障诊断系统设计[D];中北大学;2016年
3 王磊;基于HHT与神经网络的旋转机械故障诊断研究[D];南京航空航天大学;2012年
4 丛林;机械故障诊断中的多频率成分辨识方法[D];电子科技大学;2011年
5 张震;基于小波神经网络专家系统的齿轮箱故障诊断研究[D];燕山大学;2010年
6 续媛君;基于Labview的齿轮箱故障诊断研究与应用[D];中北大学;2007年
,本文编号:2282644
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2282644.html