基于隐马尔科夫模型的轴承故障诊断方法研究
[Abstract]:Bearing is one of the most widely used and damaged parts in rotating machinery. Whether the bearing is in the normal working state directly affects the efficiency of mechanized production. When the bearing fails, the machine will produce abnormal vibration and noise. How to extract the eigenvalue of vibration fault signal and identify the fault type accurately is the key of fault diagnosis. In this paper, a method based on hidden Markov model is proposed to establish the bearing fault diagnosis model. The hidden Markov model has the characteristics of strong classification ability, few training samples and fast calculation speed. It is suitable for the analysis of non-stationary vibration signals. The hidden Markov model with corresponding number of states is trained to calculate the similarity probability and the corresponding fault type is determined by the similarity probability. The specific research contents are as follows: 1. Before analyzing the rolling bearing fault signal, the characteristic data of the bearing fault signal have been established by the Hidden Markov Model, and the feasibility of the Hidden Markov Model in the bearing fault diagnosis has been verified. 2. A fault identification method based on singular value decomposition (SVD) and Hidden Markov Model (hmm) is proposed. Firstly singular value decomposition is used to decompose the fault signal data of rolling bearing. The singular value matrix is vector quantized and sent to the established hidden Markov model for fault type identification. The effectiveness of singular value decomposition (SVD) combined with Hidden Markov Model (hmm) in bearing fault diagnosis is verified by experiments. 3. A fault identification method based on S-transform and Hidden Markov model is proposed, and a hidden Markov fault identification model is established. First, the fault signal data of rolling bearing is transformed by S transform, then the time spectrum matrix after S transform is decomposed by singular value, finally vector quantization is carried out and the fault type is identified in the established hidden Markov model. The effectiveness of S-transform combined with HMM in bearing fault diagnosis is verified by experiments. 4. 4. The vibration signal acquisition and analysis system is designed. The vibration sensor adopts the acoustic emission sensor PXR02, A / D conversion chip and uses AD9225, and STM32 as the main controller and installs the corresponding wireless transmission module to collect the vibration signal. The serial port transmission function of VS is used to receive the data. Finally, the vibration signal data is analyzed by Matlab to realize the real-time monitoring and fault diagnosis of the bearing running state.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TH133.3
【相似文献】
相关期刊论文 前10条
1 张庆生;齐勇;侯迪;赵季中;;基于隐马尔科夫模型的上下文感知活动计算[J];西安交通大学学报;2006年04期
2 李晓琴;仁文科;刘岳;;利用隐马尔科夫模型识别蛋白质折叠类型[J];北京工业大学学报;2011年07期
3 罗志增;王占玉;;基于小波域隐马尔科夫模型的肌电信号滤波[J];仪器仪表学报;2010年11期
4 刘晓飞;邸书灵;;基于隐马尔科夫模型的文本分类[J];石家庄铁道大学学报(自然科学版);2013年01期
5 苗强,Viliam Makis;基于隐马尔科夫模型的故障诊断系统研究[J];航空学报;2005年05期
6 向东;刘虎;陈先桥;程艳芬;;半连续隐马尔科夫模型脱机阿拉伯手写识别[J];武汉理工大学学报(信息与管理工程版);2011年03期
7 邱英;谢锋云;;基于小波包系数与隐马尔科夫模型的刀具磨损监测(英文)[J];机床与液压;2014年12期
8 张润丹;王莹莹;;量子隐马尔科夫模型参数学习研究[J];科技视界;2014年16期
9 赵静;黄厚宽;田盛丰;纳跃跃;;基于转移和频率特征的协议异常检测[J];北京交通大学学报;2009年05期
10 李珩,谭咏梅,朱靖波,姚天顺;汉语组块识别[J];东北大学学报;2004年02期
相关会议论文 前8条
1 肖镜辉;刘秉权;;一种非时齐的隐马尔科夫模型及其在音字转换中的应用[A];全国第八届计算语言学联合学术会议(JSCL-2005)论文集[C];2005年
2 刘文壮;李均利;;一种基于隐马尔科夫模型的脱机手写汉字识别方法[A];2009系统仿真技术及其应用学术会议论文集[C];2009年
3 彭子平;张严虎;潘露露;;隐马尔科夫模型原理及其重要应用[A];2008'中国信息技术与应用学术论坛论文集(一)[C];2008年
4 王宏生;孙美玲;李家峰;;隐马尔科夫模型在构建语言模型中的应用[A];创新沈阳文集(A)[C];2009年
5 张劲松;戴蓓倩;郁正庆;王长富;;汉语识别中隐马尔科夫模型初始化的研究[A];第二届全国人机语音通讯学术会议论文集[C];1992年
6 刘杰;梁晓辉;;基于Fused隐马尔科夫模型的人体运动识别[A];第八届和谐人机环境联合学术会议(HHME2012)论文集CHCI[C];2012年
7 林晨;金蓓弘;龙震岳;陈海彪;;上下文感知的分布式事件分发研究[A];第18届全国多媒体学术会议(NCMT2009)、第5届全国人机交互学术会议(CHCI2009)、第5届全国普适计算学术会议(PCC2009)论文集[C];2009年
8 杨s,
本文编号:2290127
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2290127.html