当前位置:主页 > 科技论文 > 机电工程论文 >

双向轴流泵的优化设计及内流特性研究

发布时间:2018-10-25 07:45
【摘要】:叶轮机械内部三维流场的非定常流动机理及控制是学科研究热点问题之一,双向轴流泵作为兼顾排涝和灌溉的低扬程泵站的主要“心脏”部件,多为采用传统二元方法设计的S型叶片,存在正、反向运行条件不同时能效较低的缺陷,反向时由于导叶起正预旋作用,且无后置导叶整流,其内流结构中的逆压梯度变化、附面层分离、大尺度回流等特殊复杂流动制约了综合性能的提升,论文采用理论分析、数值模拟与试验相结合的方法,围绕非对称翼型双向轴流泵的优化设计、内流机理及主/被动流动控制技术、压力脉动特性等方面内容开展研究,取得如下成果:(1)基于保角变换法提出了一种低拱度圆弧翼型双向叶片设计方法,通过儒可夫斯基变换建立低拱度圆弧翼型正反向速度环量、理论扬程的关系,通过改变叶栅几何参数分配正反向性能,同时基于升力法设计常规S翼型双向轴流泵开展对比研究,系统对比了两种翼型叶片双向轴流泵的时均流场和压力脉动特性,通过在叶片、导叶表面网格上创建微小网格单元并监测其平均压力研究了S翼型双向轴流泵正反向运行时叶片、导叶表面的压力脉动变化规律,对比了正反向马鞍区流动特性及叶顶间隙流动特性,开展两个模型正反向不同安放角下的实验研究。结果显示,圆弧翼型叶片吸力面尾缘附近流体质点的径向运动较小,进出口边脉动幅值更低,正反向效率较S翼型模型分别高3.5%和1.3%;叶片表面压力脉动主要受导叶叶片数影响,主频为导叶通过频率,导叶表面压力脉动的主频为叶片转动频率;小流量下,正向时在1~2、4~5倍转频,反向时在0~2倍转频出现了较强的低频脉动。(2)开展双向轴流泵导叶改型设计研究,建立了弯导叶双向轴流泵反向运行内流场流动模型,引入直导叶以降低反向时叶片吸力面大冲角入流,基于Q等值面法研究了直导叶内的旋涡结构及其非定常演变规律,通过改变翼型降低流动分离强度;分析了导叶一弯管相对位置变化对流场结构及性能的影响规律。结果表明,直导叶可消除反向时叶片前的正预旋,后置直导叶内主要流动损失由吸力面附面层分离及脱落涡引起,合理选择翼型可以降低流动分离强度;弯管会破坏上游流场的轴对称分布,改变导叶各叶片的冲角。(3)构建了同时包含叶片、流道几何参数的轴流泵(风机)参数化优化平台,改进现有轴流叶片优化方法,提出一种包含实验设计和速度梯度算法的轴流式叶片组合优化方法,基于最优拉丁超立方方法及序列二次规划算法分别对叶片、流道进行优化,通过增大空间步长加速收敛。较常规直接采用实验设计或序列二次规划算法优化正向效率分别提高了3.07%和0.87%,采用扩散管减小了流道径向压差和流体周向旋转速度,对叶片和流道优化后正向效率较原模型分别提高了2.02%和2%。
[Abstract]:The unsteady flow mechanism and control of three-dimensional flow field in turbomachinery is one of the hot topics in academic research. Two-way axial flow pump is the main "heart" component of low lift pump station which takes both drainage and irrigation into account. Most of the S-type blades designed by traditional binary method have the defects of low energy efficiency in both positive and reverse operation conditions. In reverse, due to the prerotation of the guide vane and no rectification of the rear guide vane, the reverse pressure gradient changes in the internal flow structure. Special complex flow such as boundary layer separation and large scale reflux restrict the improvement of comprehensive performance. This paper uses the method of theoretical analysis, numerical simulation and test to optimize the design of asymmetric airfoil bidirectional axial flow pump. The internal flow mechanism, active / passive flow control technology, pressure fluctuation characteristics and so on are studied. The results are as follows: (1) based on the conformal transformation method, a design method for low arch circular arc airfoils is proposed. The relationship between forward and inverse velocity loop and theoretical head of low arch circular arc airfoil is established by means of Jokovsky transform. By changing the geometric parameters of cascade, the positive and negative performance is assigned. At the same time, based on the lifting method, the design of conventional S airfoil bidirectional axial flow pump is compared, and the time-averaged flow field and pressure pulsation characteristics of two kinds of airfoil bi-directional axial flow pumps are systematically compared, and the flow field and pressure pulsation characteristics of two kinds of airfoil bi-directional axial flow pumps are compared. A micro mesh cell was created on the surface of the guide vane and its average pressure was monitored. The variation of pressure fluctuation on the surface of the guide vane during the forward and backward operation of the S airfoil bidirectional axial flow pump was studied. The flow characteristics of the positive and backward saddle region and the tip clearance flow characteristics were compared. The experimental study of the two models was carried out under different forward and backward placement angles. The results show that the radial motion of fluid particles near the trailing edge of suction surface of circular arc airfoil is smaller, the pulsation amplitude of inlet and outlet edge is lower, and the positive and negative efficiency is 3.5% and 1.3% higher than that of S airfoil model, respectively. The pressure pulsation on the surface of the blade is mainly affected by the number of pieces of the guide blade, the main frequency is the passage frequency of the guide vane, the main frequency of the pressure pulsation on the surface of the guide vane is the rotating frequency of the blade; In reverse, a strong low frequency pulsation occurs at 0 ~ 2 times of rotation frequency. (2) the design of guide vane of bidirectional axial flow pump is studied, and the flow model of flow field in reverse operation of bending-guide vane bidirectional axial flow pump is established. In order to reduce the inlet flow of suction surface, the vortex structure and its unsteady evolution in the blade are studied based on the Q iso-surface method, and the flow separation strength is reduced by changing the airfoil. The influence of the relative position of the guide vane-elbow on the structure and performance of the flow field is analyzed. The results show that the direct guide vane can eliminate the positive prerotation in the front of the blade and the main flow loss is caused by the separation of the suction boundary layer and the shedding vortex. The reasonable selection of the airfoil can reduce the flow separation strength. The curved pipe will destroy the axial symmetrical distribution of the upstream flow field and change the angle of attack of the blades. (3) the parametric optimization platform of axial flow pump (fan) including the geometric parameters of blade and passage is constructed to improve the existing optimization method of axial flow blade. An axial flow blade combination optimization method including experimental design and velocity gradient algorithm is proposed. The blade and channel are optimized based on the optimal Latin hypercube method and sequential quadratic programming algorithm. The convergence is accelerated by increasing the space step size. Compared with the conventional direct experimental design or sequential quadratic programming algorithm, the forward efficiency is increased by 3.07% and 0.87%, respectively, and the radial pressure difference and the circumferential rotation velocity of the fluid are reduced by using the diffusion tube. Compared with the original model, the forward efficiency of blade and channel optimization is increased by 2.02% and 2% respectively.
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TH312

【相似文献】

相关期刊论文 前10条

1 阎诗武;;水流压力脉动的谱分析及谱特征[J];水利水运科学研究;1981年03期

2 陈红勋;;浅述水泵压力脉动的测量[J];排灌机械;1986年05期

3 李昌琪,王科社;球形压力脉动消除器的试验研究[J];石油机械;1988年02期

4 黄涛;水流压力脉动的特性及模型相似律[J];水利学报;1993年01期

5 何秀华;水泵压力脉动的类型研究[J];排灌机械;1996年04期

6 刘阳;袁寿其;袁建平;;离心泵的压力脉动研究进展[J];流体机械;2008年09期

7 袁寿其;薛菲;袁建平;汤跃;;离心泵压力脉动对流动噪声影响的试验研究[J];排灌机械;2009年05期

8 姚志峰;王福军;肖若富;严海军;刘竹青;王敏;;离心泵压力脉动测试关键问题分析[J];排灌机械工程学报;2010年03期

9 朱荣生;苏保稳;杨爱玲;付强;王秀礼;;离心泵压力脉动特性分析[J];农业机械学报;2010年11期

10 全良桂;许海明;吕金喜;庄卫将;;离心泵内部非定常数值模拟与压力脉动研究[J];热能动力工程;2011年03期

相关会议论文 前10条

1 李海玲;李启章;;浅析原型、模型涡带压力脉动幅值的相似问题[A];第十九次中国水电设备学术讨论会论文集[C];2013年

2 曾云峰;;水轮机压力脉动测试的设计[A];四川省电子学会传感技术第九届学术年会论文集[C];2005年

3 潘雨村;张怀新;;用大涡模拟方法研究湍流边界层壁面压力脉动[A];第十届船舶水下噪声学术讨论会论文集[C];2005年

4 余峰;徐林;孟丛林;傅波;;压力脉动加载试验控制方法[A];面向航空试验测试技术——2013年航空试验测试技术峰会暨学术交流会论文集[C];2013年

5 刘树红;孙跃昆;左志钢;刘锦涛;吴玉林;;原型水泵水轮机压力脉动传递特性的数值模拟及分析[A];第十九次中国水电设备学术讨论会论文集[C];2013年

6 陈曦;王国栋;胡婧;王先洲;冯大奎;;舵翼压力脉动及流噪声特性数值分析[A];第十一届全国水动力学学术会议暨第二十四届全国水动力学研讨会并周培源诞辰110周年纪念大会文集(上册)[C];2012年

7 卢岳良;柯兵;;双压力高压泵关键技术研究[A];探索 创新 交流(第4集)——第四届中国航空学会青年科技论坛文集[C];2010年

8 何成连;龚长年;方源;;混流式水轮机低负荷压力脉动[A];水轮发电机组稳定性技术研讨会论文集[C];2007年

9 任辉;任革学;;航天器中的Pogo振动现象及其稳定性分析[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年

10 邢科礼;冯玉;金侠杰;李庆;;基于AMESim/Matlab的电液伺服控制系统的仿真研究[A];第三届全国流体传动及控制工程学术会议论文集(第二卷)[C];2004年

相关博士学位论文 前6条

1 付大春;双吸离心泵叶片交错角度对压力脉动影响研究[D];中国农业大学;2017年

2 马鹏飞;双向轴流泵的优化设计及内流特性研究[D];华中科技大学;2016年

3 徐朝晖;高速离心泵内全流道三维流动及其流体诱发压力脉动研究[D];清华大学;2004年

4 杨孙圣;离心泵作透平的理论分析数值计算与实验研究[D];江苏大学;2012年

5 吴登昊;高效低振动循环泵设计与试验研究[D];江苏大学;2013年

6 周佩剑;离心泵失速特性研究[D];中国农业大学;2015年

相关硕士学位论文 前10条

1 周增昊;基于流固耦合的蜗壳式混流泵压力脉动及结构特性分析[D];哈尔滨工业大学;2015年

2 项高明;考虑流固耦合作用水泵水轮机泵模式下压力脉动研究[D];哈尔滨工业大学;2015年

3 赵天扬;纯水液压系统管路瞬态压力脉动过程研究[D];电子科技大学;2015年

4 刘冰;叶片水力非对称性低比速离心泵特性研究[D];江苏大学;2016年

5 郭雷;水泵水轮机多工况条件下压力脉动研究[D];浙江大学;2016年

6 于定鹏;径向直叶片燃油汽心泵的数值模拟及其应用研究[D];南京航空航天大学;2015年

7 马彪;灯泡贯流式水轮发电机组稳定性研究[D];兰州理工大学;2016年

8 曾章美;混流式水轮机尾水管涡带和压力脉动数值计算分析[D];西华大学;2016年

9 杨亚飞;甲醇泵水力设计及压力脉动特性研究[D];合肥工业大学;2017年

10 韩笑笑;基于时序效应的串并联离心泵压力脉动研究[D];合肥工业大学;2017年



本文编号:2293078

资料下载
论文发表

本文链接:https://www.wllwen.com/jixiegongchenglunwen/2293078.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户23ae5***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com