压电纤维驱动型摆动式压电泵的设计及试验研究
[Abstract]:In this paper, a piezoelectric fiber-driven oscillating piezoelectric pump is proposed in combination with a fish-tail piezoelectric pump and a piezoelectric fiber composite (MFC), which has the advantages of simple structure, no noise, no reflux and the like. Some tentative work has been done on the development of piezoelectric pump and the application of piezoelectric fiber. The research contents of this paper mainly include the following aspects: the piezoelectric fiber is bonded to the bronze base plate to form the driver adopted in this paper. The relation between the curvature of the piezoelectric fiber driver and the thickness and elastic modulus of the piezoelectric fiber driver is analyzed by using the classical laminated plate theory, and the working model diagram of the oscillating piezoelectric pump is established, the working principle of the oscillating piezoelectric pump is analyzed, and the theoretical flow rate is derived. Based on the statics analysis of piezoelectric fiber and piezoelectric fiber driver, the working mechanism of piezoelectric fiber is analyzed, and the change law of maximum amplitude of piezoelectric fiber driver with substrate thickness is obtained: with the increase of the thickness of the substrate, the maximum amplitude of the driver decreases gradually; Modal analysis of the piezoelectric fiber driver is carried out to obtain the first-order mode shape and the natural frequency of the piezoelectric fiber driver, and the vibration mode of the piezoelectric fiber driver is determined to be suitable as the driving mode of the oscillating piezoelectric pump. A piezoelectric fiber driver test and test system was constructed. The first order natural frequency and the maximum amplitude of the piezoelectric fiber driver bonded to different thickness substrates were measured. The experimental results show that as the thickness of the substrate increases, the natural frequency of the piezoelectric fiber driver increases gradually. The results show that the deformation of the piezoelectric fiber driver increases gradually from the fixed end to the free end, the tail warp state and the simulation result agree with each other. In general, when the substrate material is the same, the smaller the substrate thickness, the larger the overall amplitude of the piezoelectric fiber driver. In this paper, we designed a swing type piezoelectric pump with left inlet and right exit, left inlet and right outlet. The simulation software was used to analyze the flow and solid coupling of fluid and piezoelectric fiber driver in pump. The results showed that the flow rate was 458 ml/ min, 68ml/ min, 263ml/ min, respectively. Therefore, the performance of the swing piezoelectric pump in the left-right-out structure mode is better, and the following research adopts the left-in right-out structure form, namely, the inlet and the outlet are positioned on the same straight line, the inlet is in front of the fixed end of the driver, and the outlet is positioned behind the free end of the driver. Based on the velocity profile and velocity vector diagram of 0T, 1/ 4T, 2/ 4T and 3/ 4T, the working process of the swing piezoelectric pump in the left-right-out structure is analyzed. The influence of the thickness of the driver board on the output flow of the oscillating piezoelectric pump is studied by simulating the distance between the pump outlet and the end of the piezoelectric fiber driver. The simulation results show that when the distance between the pump outlet and the piezoelectric fiber driver end is changed from 1mm to 5mm, the output flow drops sharply as the distance between the pump outlet and the piezoelectric fiber driver end is changed from 0. 2mm to 0. 6mm. With the increase of the thickness of the substrate, the output flow rate of the swing piezoelectric pump is gradually increased. A test prototype of a swing piezoelectric pump was developed, and a piezoelectric pump test system was built. Five main parameters (pump outlet and driver end distance, driver substrate thickness, flexible tail length and outlet diameter) affecting the performance of the oscillating piezoelectric pump were obtained under the condition that other parameters were consistent. The inlet diameter) was tested. The test results show that when the distance between the pump outlet and the driver end gradually increases, the output flow of the swing piezoelectric pump drops sharply. When the distance is 1mm, the output flow rate is 158ml/ min. When the distance is increased to 550mm, the output flow rate of the swing piezoelectric pump is reduced to 8. 6ml/ min. when the distance is more than 5mm, the flow rate is hardly detected; the thickness of the substrate is changed from 0.2mm to 0.6mm, and the output flow rate of the swing piezoelectric pump is gradually increased when the distance is 0. 1mm; when the length of the flexible tail is changed from 2mm to 6mm, The output flow of the swing type piezoelectric pump decreases with the increase of the length of the flexible tail, and the flow rate of the swing type piezoelectric pump reaches the maximum value of 321ml/ min when the length of the flexible tail is 4mm; as the diameter of the outlet increases, the flow rate of the oscillating piezoelectric pump is reduced firstly, and the outlet diameter is 7mm, The output performance of the oscillating piezoelectric pump is optimal, the maximum output flow rate is 458ml/ min, and the influence of the inlet diameter on the output flow rate of the oscillating piezoelectric pump is not obvious.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH38
【相似文献】
相关期刊论文 前10条
1 阚君武,杨志刚,程光明;压电泵的现状与发展[J];光学精密工程;2002年06期
2 焦小卫,黄卫清,赵淳生;压电泵技术的发展及其应用[J];微电机(伺服技术);2005年05期
3 曾平;林敬国;程光明;杨志刚;吴博达;刘国君;;整体开启阀微型压电泵实验研究[J];压电与声光;2006年05期
4 程光明;李鹏;杨晓冬;阚君武;;主动阀压电泵的设计[J];排灌机械;2007年05期
5 何秀华;蒋权英;张睿;杨嵩;;被动阀压电泵的动力学模型及其求解[J];排灌机械;2007年06期
6 王晓伟;刘建亭;路计庄;刘安;;Y形流管无阀压电泵结构特性探析[J];煤矿机械;2008年06期
7 何秀华;张睿;杨嵩;邓许连;蒋权英;;V型无阀压电泵的流场分析[J];农业机械学报;2008年10期
8 贺琳;纪秀;郑文;杨志刚;;新型金属阀在小型压电泵中的应用[J];压电与声光;2011年01期
9 孙静;鲁海龙;;微型主被动阀结合式压电泵的试验研究[J];科技创新与应用;2014年11期
10 李军,吴博达,程光明,杨志刚;收缩管/扩张管型无阀压电泵的工作原理[J];压电与声光;2000年06期
相关会议论文 前9条
1 孙健;孙启健;刘彦菊;冷劲松;;一种基于柔性放大机构的压电叠堆泵设计[A];复合材料:创新与可持续发展(下册)[C];2010年
2 黄俊;张建辉;;“Y”锥组合流管无阀压电泵的原理与实验验证[A];Proceedings of the 2010 Symposium on Piezoelectricity,Acoustic Waves and Device Applications[C];2010年
3 刘汉旭;张铁民;;双腔同步驱动无阀大流量压电泵有限元分析[A];农业工程科技创新与建设现代农业——2005年中国农业工程学会学术年会论文集第一分册[C];2005年
4 袁又春;黄卫清;赵淳生;;收缩/扩张管型无阀压电泵泵腔流体仿真[A];第十一届中国小电机技术研讨会论文集[C];2006年
5 胡笑奇;张建辉;黄毅;夏齐宵;黄卫清;;一种仿生型无阀压电泵的研究[A];第十届全国振动理论及应用学术会议论文集(2011)下册[C];2011年
6 王亮;张建辉;胡笑奇;王克;;摆动振子参数与尾鳍式无阀压电泵工作能力关系的实验研究[A];第十届全国振动理论及应用学术会议论文集(2011)下册[C];2011年
7 皋路;张建辉;胡笑奇;黄毅;;压电双晶片结构的仿尾鳍式无阀泵改进研究[A];第十届全国振动理论及应用学术会议论文集(2011)下册[C];2011年
8 黄合成;孙洪昌;马苑学;;一种矩形压电振子式主动阀压电泵的研究[A];创新驱动,,加快战略性新兴产业发展——吉林省第七届科学技术学术年会论文集(上)[C];2012年
9 高建民;唐为奇;;新型无阀微压电泵的微流场仿真及设计[A];农业机械化与新农村建设——中国农业机械学会2006年学术年会论文集(下册)[C];2006年
相关重要报纸文章 前1条
1 记者王华楠;我国研发成功压电精密驱动技术[N];中国技术市场报;2010年
相关博士学位论文 前10条
1 吴丽萍;扁锥腔无阀压电泵理论与实验研究[D];吉林大学;2008年
2 董景石;微型精密压电泵设计理论及其应用技术研究[D];吉林大学;2012年
3 刘勇;轮式阀微型压电泵的设计理论及试验研究[D];吉林大学;2012年
4 姜德龙;多腔串联压电泵结构设计及关键技术研究[D];吉林大学;2013年
5 吴越;压电泵动力学分析与优化设计[D];吉林大学;2013年
6 纪晶;半球缺阻流体无阀压电泵的研究[D];南京航空航天大学;2014年
7 黄俊;流阻差型无阀压电泵的原理与试验研究[D];南京航空航天大学;2013年
8 陈松;液体压电泵中气泡控制的机理、方法及效果研究[D];吉林大学;2016年
9 杨嵩;基于附壁效应的新型无阀压电泵[D];江苏大学;2015年
10 陈建;基于振动滤波器的压电泵研究[D];中国科学技术大学;2017年
相关硕士学位论文 前10条
1 李立安;多腔串联压电泵的设计及其在直线马达中的试验研究[D];吉林大学;2009年
2 杨嵩;基于数值模拟的三通扩散/收缩管无阀压电泵设计及性能研究[D];江苏大学;2009年
3 张波;新型压电泵的结构设计及动态系统建模[D];哈尔滨工业大学;2008年
4 董景石;悬臂梁阀压电泵理论及应用研究[D];吉林大学;2004年
5 路计庄;新型无阀压电泵开发与压电泵工作噪声的研究[D];北京工业大学;2007年
6 袁又春;收缩管/扩张管型无阀压电泵的研究[D];南京航空航天大学;2006年
7 刘健;针对不同粘度液体压电泵的设计与实验研究[D];吉林大学;2008年
8 吴迪;液体混合用多入口压电泵的研究[D];吉林大学;2012年
9 朱佳炜;平面扩散收缩管无阀压电泵内部流场瞬态特性理论分析及实验研究[D];江苏大学;2016年
10 王志军;基于合成射流原理的无阀气体压电泵的仿真分析和试验研究[D];吉林大学;2016年
本文编号:2300588
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2300588.html