圆柱斜齿轮传动误差的补偿分析
[Abstract]:Involute cylindrical helical gears are widely used in the field of high speed heavy load and high performance drive industry because of their stable transmission, low meshing impact and low vibration noise. However, there is a gap between the design and manufacture of high-precision gears in China and the advanced level in the world. Based on the national science and technology support project, this paper draws lessons from the theory of active design of spiral bevel gears. The active design of high precision involute helical cylindrical gear based on transmission error is studied. In this paper, based on the meshing theory of conjugate involute helical cylindrical gears, a tooth surface contact model considering hob installation error and gear installation error caused by axis irregularity is established respectively. Based on TCA (Tooth Contact Analysis) technology, the transmission simulation analysis of helical gear pair is realized by using MATLAB software. The influence of hob installation error and installation error on helical gear transmission error curve and contact trace is analyzed. Based on error compensation technology and the theory of machining error compensating assembly error, the active design of meshing quality of parallel axis cylindrical helical gear is realized. The main contents of this paper are as follows: 1) based on the theoretical basis of hob machining principle and the methodology of helical tooth surface formation, the suitable meshing tooth surface equation and unit normal vector are derived. By using vector rotation and coordinate transformation in differential geometry and spatial meshing principle, a conjugate tooth contact model of helical gear considering hob installation error is established. Based on the theory of conjugate motion of gear pair, the TCA equations and meshing expressions of two tooth surfaces at contact point are derived. Based on the MATLAB software, the simulation results show that the sensitivity of the transmission error curve to the angle deviation of the hob mounting axis is small, but the sensitivity increases with the increase of the error. The sensitivity of transmission error curve to the radial runout of hob is great, but with the increase of the error, the sensitivity decreases. 2) according to the basic theorem of tooth profile meshing and the properties of involute helical gear pair of parallel axis, the derivation results show that, The center distance error has little effect on the transmission error of gear pair. Taking into account the possible installation deviations in the assembly process of gear pairs, the related contact mathematical model is established, and the error simulation analysis is carried out based on TCA technology. The results show that the parallelism error in the axis plane and the vertical plane will change the position of the gear contact trace, but with the increase of the parallelism error of the axis plane, the amplitude of the contact trace deviation from the theoretical position without installation error will decrease. Its sensitivity was decreased; With the increase of the parallelism error in the vertical plane, the range of contact trace deviation from the theoretical position without mounting error increases and its sensitivity increases. 3) based on error compensation technology, by changing the hob installation error value, The change of the tooth surface shape of the machined gear is realized, and the compensation effect of different machining error sources on the contact trace caused by the gear pair installation error is analyzed. Through the observation and analysis of contact trace, it is concluded that by changing the error angle of hob mounting axis, the controllability of tooth surface contact characteristics can be realized.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TH132.41
【相似文献】
相关期刊论文 前10条
1 郭长城;翟仕儒;韩福辉;;斜齿轮副的测绘方法[J];一重技术;2005年06期
2 何晓舟;陈上达;王培鞭;阮忠唐;;斜齿轮的刚度计算及扭振系统固有频率的分析[J];重型机械;1990年04期
3 张荣生;;大型斜齿轮的粘接修复[J];新技术新工艺;1992年06期
4 张卫东;测量斜齿轮副的新方法[J];机械工艺师;1995年06期
5 刘辉,吴昌林,杨叔子;参数化啮合斜齿轮三维有限元网格的自动生成[J];华中理工大学学报;1997年09期
6 王奇斌;胡鹏;张义民;马辉;;基于积分模型的斜齿轮转子系统振动特性分析[J];东北大学学报(自然科学版);2014年05期
7 李素有 ,孙智民 ,沈允文;含间隙的斜齿轮副扭振分析与试验研究[J];机械传动;2002年02期
8 姚阳迪;林腾蛟;何泽银;;高速斜齿轮传动稳态温度场仿真分析[J];机械研究与应用;2009年06期
9 刘之镭;;动力传动用窄斜齿轮的振动[J];齿轮;1987年04期
10 刘广利;吴坤;;数字化样机技术在斜齿轮副啮合仿真中的应用[J];中国产业;2011年05期
相关会议论文 前3条
1 张桂荣;翟仕儒;韩福辉;;斜齿轮副的测绘方法[A];2002年黑龙江省机械工程学会年会论文集[C];2002年
2 ;斜齿轮副的测绘方法(英文)[A];2002年黑龙江省机械工程学会年会论文集[C];2002年
3 杨长青;刘宇飞;喻海鹏;;斜齿轮副的测绘方法[A];第三届十省区市机械工程学会科技论坛暨黑龙江省机械工程学会2007年年会论文(摘要)集[C];2007年
相关博士学位论文 前1条
1 蒋汉军;斜齿轮摩擦激励与故障激励耦合动力学建模及其动态特征研究[D];重庆大学;2015年
相关硕士学位论文 前10条
1 周海燕;斜齿轮动力学接触分析及齿向优化研究[D];山东大学;2015年
2 张瑞;圆柱斜齿轮传动误差的补偿分析[D];太原理工大学;2016年
3 丁豹;斜齿轮系统振动特性研究[D];哈尔滨工程大学;2010年
4 费国标;船用斜齿轮三维动力接触及温度场仿真研究[D];武汉理工大学;2006年
5 尉小霞;斜齿轮接触问题的形状优化研究[D];太原理工大学;2002年
6 杨青;大型斜齿轮传动动态特性的仿真研究[D];哈尔滨工业大学;2008年
7 陈辰嘉;小倾角齿轮箱变厚斜齿轮副啮合性能仿真及疲劳寿命分析[D];重庆大学;2013年
8 沙发明;双离合变速器斜齿轮非线性动力学分析[D];合肥工业大学;2015年
9 孙胜苗;离心压缩机用斜齿轮副的有限元分析及疲劳寿命预测[D];重庆大学;2013年
10 王权;起重机减速器变位斜齿轮副有限元仿真分析与研究[D];山东科技大学;2010年
,本文编号:2302540
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2302540.html