基于弧面凸轮的分度与摆动组合传动装置设计及动力学仿真
[Abstract]:The manufacturing industry embodies the level of productivity of a country. In the future, the upgrading of the manufacturing industry level cannot be separated from the development of the automatic production line. As the main part of the production line, the mechanical transmission part is bound to have a bearing on the speed and accuracy of its transmission. The degree of automation sets higher standards. Because of the requirement of production technology, the mechanical transmission part often needs to realize periodic indexing and swing action, but most of the existing transmission devices or mechanisms can only realize a single indexing or swinging movement, which need to be controlled separately. The transmission accuracy is not high, the whole transmission system is complex and does not meet the requirements of modern manufacturing integration, and will be gradually eliminated by the market. In view of the present situation, this paper presents a combined indexing and swinging transmission device for automatic production line based on the existing globoidal cam mechanism. The main contents are as follows: (1) the mathematical model of globoidal cam is established. Based on the characteristics of the straight line surface of the globoidal cam roller trace surface and the fact that the actual profile surface is equidistant with each other, the method of establishing the equation by using the equidistant surface method is proposed, and the general profile equation of the globoidal cam is established. The initial position of globoidal cam mechanism is analyzed, and the pressure angle and curvature characteristics are studied. Finally, an example is designed to prove the correctness of the established mathematical model. This method greatly simplifies the analysis and solution process of the globoidal cam profile. (2) A combined indexing and swinging transmission device based on the globoidal cam is designed. To replace a traditional intermittent mechanism or device that can only achieve a single motion. The structure of the device is designed. In order to meet the requirement of large swing angle between two processes in the production line, the globoidal swing cam mechanism with 180 掳swing angle is designed. Finally, the transmission material system of LED spectrometer is taken as a design example. The various dimensions of the device are calculated. (3) the existing modeling methods of the globoidal cam are summarized and analyzed, and the method based on the principle of equidistant surface is adopted to complete the modeling of the globoidal cam. After creating the solid model of each part of the transmission device, in the assembly environment of Pro/E, the various parts models that have already been established are assembled according to the previous design. In order to make the structure of the device more clear, the engineering drawings of the device are generated. (4) the dynamic simulation of the transmission device is carried out. First, the angular displacement, angular velocity and angular acceleration of the multi-rigid body model of the device are tested in ADAMS software. The simulation results show that the design and modeling process of the device is correct. Then the modal analysis of the transmission shaft is carried out in the ANSYS software, and the flexible process of the drive shaft is expounded, and the rigid-flexible coupling model of the device is established by importing the treated transmission shaft into the ADAMS. The angular acceleration at the output end is chosen as the research object for dynamic simulation to verify whether the device meets the design requirements.
【学位授予单位】:济南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH132.47
【参考文献】
相关期刊论文 前10条
1 邵世权;;直动-摆动从动件凸轮机构的分析设计[J];山东工业技术;2016年11期
2 何海琴;李延平;常勇;;基于Pro/E和ADAMS的新型凸轮机构建模及仿真分析[J];机械传动;2016年02期
3 李军营;杨术芳;;基于ADAMS的无碳小车的分析设计[J];农业装备与车辆工程;2015年06期
4 王军政;赵江波;汪首坤;;电液伺服技术的发展与展望[J];液压与气动;2014年05期
5 袁伟;;单滚子大摆角弧面凸轮机械手的研究[J];新技术新工艺;2014年01期
6 李丽杰;;液压传动技术在机械驱动中应用的探讨[J];黑龙江科技信息;2013年25期
7 赵浩东;郭培全;曹艳科;;平行分度凸轮机构刚柔耦合动力学仿真[J];机械设计;2012年01期
8 方代正;王贵成;;弧面凸轮分度机构设计及建模方法研究[J];工程图学学报;2010年02期
9 田亚平;康军凤;;阻尼对高速凸轮机构动力学的影响分析[J];机械传动;2010年03期
10 陈兆荣;陶波;;高精度弧面分度凸轮设计方法研究[J];工程图学学报;2009年03期
相关博士学位论文 前2条
1 陈俊华;摆动从动件空间凸轮设计及非等径加工研究[D];南昌大学;2011年
2 李蕾;滚珠型弧面分度凸轮机构的动力学分析及其性能研究[D];山东大学;2011年
相关硕士学位论文 前10条
1 李永建;动作集成高速开箱弧面凸轮机构的设计与研究[D];陕西科技大学;2014年
2 马志平;弧面分度凸轮机构刚柔耦合动力学研究[D];陕西科技大学;2014年
3 文明;可输出多种分度数的弧面分度凸轮机构的设计与仿真[D];陕西科技大学;2014年
4 王晓辉;基于刚柔耦合模型的圆柱分度凸轮机构动力学分析[D];延边大学;2012年
5 陈光杰;一种同轴式凸轮连杆组合分度机构的设计与研究[D];天津大学;2012年
6 刘冬;双凸轮联动自动换刀装置多体动力学仿真研究[D];大连理工大学;2010年
7 唐晓鹏;弧面分度凸轮机构啮合特性分析与仿真[D];西安理工大学;2010年
8 刘伟;间歇分度凸轮机构的研究[D];江南大学;2009年
9 连善锵;一种新型高速分度凸轮机构的精度研究[D];天津大学;2008年
10 张红杏;弧面分度凸轮的数控加工原理与方法[D];大连理工大学;2008年
,本文编号:2332641
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2332641.html