抗磁悬浮石墨转子理论分析与实验
发布时间:2018-11-21 17:56
【摘要】:提出了一种由钕铁硼永磁体和高定向热解石墨转子组成的抗磁悬浮结构。石墨转子采用四个叶片结构,其重力与永磁体对它的抗磁力相等,从而实现转子稳定地悬浮在永磁体上方,并在外界驱动转矩的作用下发生转动。有限元软件中仿真得到石墨转子的悬浮高度为130μm,与实验测量值吻合较好,仿真误差为1.5%。实验中利用针孔喷嘴向转子叶片处施加切向气流作为驱动转矩,对转子的旋转速度与气流流速的相对关系进行了测试分析,发现转子最大转速可达500r/min。该抗磁悬浮结构有望用于非接触式的微型传感器和微型电机中。
[Abstract]:An anti-magnetic suspension structure consisting of NdFeB permanent magnet and high directional pyrolytic graphite rotor is proposed. The graphite rotor is composed of four blades, and its gravity is equal to that of the permanent magnet, so that the rotor is suspended over the permanent magnet stably and rotates under the external driving torque. The suspension height of graphite rotor is 130 渭 m, which is in good agreement with the experimental data, and the simulation error is 1.5. In the experiment, the relative relationship between the rotor speed and the velocity of the rotor was measured and analyzed by applying tangential flow to the rotor blade. It was found that the maximum speed of the rotor could reach 500 r / min. The anti-maglev structure is expected to be used in non-contact micro sensors and micro motors.
【作者单位】: 郑州大学机械工程学院;
【基金】:国家自然科学基金资助项目(51475436) 河南省重点科技攻关项目(152102210042)
【分类号】:TM273
本文编号:2347801
[Abstract]:An anti-magnetic suspension structure consisting of NdFeB permanent magnet and high directional pyrolytic graphite rotor is proposed. The graphite rotor is composed of four blades, and its gravity is equal to that of the permanent magnet, so that the rotor is suspended over the permanent magnet stably and rotates under the external driving torque. The suspension height of graphite rotor is 130 渭 m, which is in good agreement with the experimental data, and the simulation error is 1.5. In the experiment, the relative relationship between the rotor speed and the velocity of the rotor was measured and analyzed by applying tangential flow to the rotor blade. It was found that the maximum speed of the rotor could reach 500 r / min. The anti-maglev structure is expected to be used in non-contact micro sensors and micro motors.
【作者单位】: 郑州大学机械工程学院;
【基金】:国家自然科学基金资助项目(51475436) 河南省重点科技攻关项目(152102210042)
【分类号】:TM273
【相似文献】
相关期刊论文 前8条
1 武震声;;磁悬浮技术综述[J];微特电机;1984年03期
2 朱美玲,颜景平;磁悬浮在工程中的应用和发展[J];电子工业专用设备;1993年03期
3 ;磁悬浮风力发电在广州己实现产业化[J];广东输电与变电技术;2007年01期
4 刘健;韩邦成;王英广;;基于软件延时补偿的高速磁悬浮电机转子低频颤振抑制研究[J];振动与冲击;2014年10期
5 张宏;李德才;孙明礼;许海平;何新智;;磁悬浮球的实验研究[J];运城学院学报;2005年S1期
6 吴兰;磁悬浮与光电反馈式静电悬浮[J];光学仪器;1999年03期
7 苏世栋;;一种基于涡流原理的磁悬浮实验装置[J];运城学院学报;2010年05期
8 ;[J];;年期
相关硕士学位论文 前4条
1 时荣超;旋转磁场电动式磁悬浮装置控制的研究[D];北京交通大学;2010年
2 翁和章;磁悬浮直线运动平台控制系统研究[D];山东大学;2013年
3 黎东升;磁悬浮有害力矩测试的研究[D];长春工业大学;2012年
4 王晓亮;磁悬浮直线运动平台的结构设计与优化[D];山东大学;2013年
,本文编号:2347801
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2347801.html