基于磷虾群算法的SVR滚动轴承性能衰退预测研究
[Abstract]:As one of the key parts in large rotating machinery, rolling bearing plays an important role in ensuring the normal operation of machinery and equipment. Therefore, it is very important to carry out predictive maintenance in advance. The feature extraction of vibration signal has a direct impact on the trend of decline and prediction accuracy. How to establish the correct evaluation index of bearing degradation is related to the accuracy of prediction results. It is very important to take the corresponding measures before the rolling bearing failure to avoid the accident. Based on the existing vibration signal feature extraction methods of rolling bearings, a new feature extraction method based on CEEMD and wavelet packet semi-soft threshold is proposed in this paper, which is different from the traditional time domain, frequency domain and time-frequency domain. On the basis of ensuring the integrity of the original signal, the noise in the high frequency vibration signal is filtered, and compared with other time-frequency methods, the effectiveness of the method is verified by experiments. In view of the improved feature extraction method proposed above, this paper deals with the dimensionality reduction of the high Vitert collection on the basis of obtaining several feature parameters, and puts forward the method of combining LLE with fuzzy C-means in view of the shortcomings of PCA,KPCA. After LLE clustering and fuzzy C-means quadratic clustering, the clustering effect of bearing inner ring with different degrees of decline is compared by experiments. Aiming at the problem of low prediction accuracy of traditional support vector regression machine, a multivariable support vector regression method based on krill swarm algorithm is proposed. The feeding principle of krill colony is adopted, and the optimal parameter Con in support vector regression machine is selected. The genetic algorithm and the krill swarm algorithm are tested to predict the decline trend of rolling bearing inner ring accurately. Finally, using the data of the rolling bearing life test at the University of Cincinnati, the vibration signals of the rolling bearing are extracted by the method in this paper, and the different decline process of the inner ring of the rolling bearing is divided into stages. The whole life cycle degradation trend of rolling bearings is predicted by three groups of different input features to be predicted. It is proved that this method has high prediction accuracy and more comprehensive information, which is of great significance to the research of rolling bearing performance decline prediction.
【学位授予单位】:哈尔滨理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH133.33
【相似文献】
相关期刊论文 前10条
1 潘锋;张敏华;;考虑气象因素SVR算法的短期电力负荷预测[J];供用电;2008年01期
2 丁卫;王建全;;基于SVR回归的电力系统暂态稳定隐式梯形算法的改进[J];江南大学学报(自然科学版);2008年02期
3 胡良谋;曹克强;王文栋;徐浩军;董新民;;基于SVR的非线性系统故障诊断研究[J];机械科学与技术;2010年02期
4 王玲;付冬梅;穆志纯;;遗传优化的SVR在钢材力学性能预报中的应用[J];系统仿真学报;2009年04期
5 陈荣;梁昌勇;谢福伟;;基于SVR的非线性时间序列预测方法应用综述[J];合肥工业大学学报(自然科学版);2013年03期
6 蔡从中;王桂莲;裴军芳;朱星键;;沥青生产过程中软化点的SVR预测[J];重庆大学学报;2011年09期
7 王文超;苗夺谦;陈骥远;;基于SVR算法的燃气轮机功率预测研究[J];计算机科学;2013年S1期
8 胡小平;崔海蓉;朱丽华;王新燕;;基于SVR的隐含风险中性概率密度函数提取(英文)[J];Journal of Southeast University(English Edition);2010年03期
9 荣健;申金娥;钟晓春;;基于小波和SVR的红外弱小目标检测方法[J];西南交通大学学报;2008年05期
10 夏国恩;金炜东;张葛祥;;改进SVR及其在铁路客运量预测中的应用[J];西南交通大学学报;2007年04期
相关博士学位论文 前2条
1 刘小雍;基于SVR的非机理模型建模研究及故障预测[D];华中科技大学;2015年
2 周晓剑;基于SVR的元建模及其在稳健参数设计中的应用[D];南京理工大学;2012年
相关硕士学位论文 前8条
1 焦宏超;基于SVR的旋转机械耦合故障诊断方法研究[D];华北电力大学;2016年
2 许迪;基于磷虾群算法的SVR滚动轴承性能衰退预测研究[D];哈尔滨理工大学;2017年
3 叶立强;基于SVR的滚动轴承剩余使用寿命预测方法研究[D];哈尔滨理工大学;2017年
4 钱吉夫;SVR季节性时间序列预测模型的构建与应用[D];华南理工大学;2010年
5 谭艳峰;基于SVR的话务量预测模型研究[D];新疆大学;2010年
6 谭庆双;基于SVR的混凝土/水泥的配合比对其抗压强度影响规律的研究[D];重庆大学;2014年
7 周晓剑;拉斯噪声和均匀噪声下SVR的鲁棒性研究[D];江南大学;2008年
8 刘帮;多核SVR在污水处理出水指标建模中的应用研究[D];湖南工业大学;2015年
,本文编号:2350803
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2350803.html