主动磁悬浮轴承滑模变结构控制器的研究
[Abstract]:With the development of industry, it is more and more difficult for traditional bearings to meet the requirements of high performance and low energy consumption. Active magnetic bearing (AMB) has many advantages such as no mechanical loss, no friction, no lubrication, low noise, adjustable rigid damping, high theoretical speed and so on. It has gradually become an ideal substitute for traditional bearings. However, the active magnetic bearing system is a multi-input and multi-output system with strong nonlinearity and high coupling. The traditional PID control method can not meet the requirements of the stability and dynamic characteristics of the system. Therefore, the sliding mode variable structure control strategy is used to study the controller of active magnetic bearing. The main work is as follows: the development and application prospect of active magnetic bearing are summarized, the basic structure and working principle of active magnetic suspension bearing are studied. The single-degree-of-freedom active magnetic bearing system is studied and its mathematical model is established. According to the discrete sliding mode variable structure control theory, the corresponding controller is constructed, and the program is written by MATLAB. The control effects of discrete sliding mode variable structure controller and traditional PID controller are simulated and compared. On the basis of the research of single degree of freedom magnetic bearing, the five degree of freedom active magnetic bearing system is systematically studied. Firstly, the equation of motion is analyzed and the mathematical model of the system is established. Aiming at the complexity of 5-DOF active magnetic bearing system, the decoupling study is carried out, and a controller based on multi-input and multi-output integral sliding mode variable structure control is designed. Finally, the simulation results show that the proposed control strategy has better dynamic performance and robustness than the traditional PID control method.
【学位授予单位】:天津科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH133.3
【参考文献】
相关期刊论文 前10条
1 施佳余;吴国庆;茅靖峰;张旭东;;磁悬浮轴承系统控制方法研究[J];机械设计与制造;2015年12期
2 郑仲桥;谈浩楠;张建生;;主动磁悬浮轴承数模混合式PID控制器研究[J];机械设计与制造;2014年05期
3 孙兴伟;刘万涛;孙凤;王可;;径向磁悬浮轴承的功耗分析[J];机械工程与自动化;2012年04期
4 何晓凤;邬清海;;磁悬浮轴承磁路结构分析与数学模型建立方法[J];轴承;2011年12期
5 钱坤喜;许自豪;王颢;王芳群;;新型永磁悬浮轴承在透平机及心脏泵中的应用[J];江苏大学学报(自然科学版);2011年06期
6 陆陈;花榕泽;赵言军;潘礼正;仇国富;;轴向磁悬浮轴承控制系统的可靠性研究[J];石油工业技术监督;2011年07期
7 任俊杰;刘彦呈;赵友涛;王川;;船用大功率永磁电机矢量控制方案的比较[J];电机与控制学报;2011年06期
8 彭文中;;差动电容式位移传感器的仿真研究[J];传感器世界;2011年05期
9 常肖;徐龙祥;董继勇;;磁悬浮轴承数字功率放大器[J];机械工程学报;2010年20期
10 刘敏;孙长生;;电涡流式振动位移传感器应用和运行分析[J];浙江电力;2009年02期
相关博士学位论文 前1条
1 骆再飞;滑模变结构理论及其在交流伺服系统中的应用研究[D];浙江大学;2003年
相关硕士学位论文 前10条
1 吴桐;主动磁悬浮轴承及其控制方法研究[D];沈阳工业大学;2016年
2 姚迪;主动磁悬浮轴承稳定性控制策略研究[D];华东理工大学;2015年
3 邹s,
本文编号:2365878
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2365878.html