基于自相关降噪和ELMD的轴承故障诊断方法
发布时间:2018-12-10 14:27
【摘要】:为了提取在故障轴承振动信号中被强噪声淹没的微弱冲击特征信号,提出一种基于总体局部均值分解和自相关降噪的轴承故障诊断方法。首先,应用自相关函数对轴承故障信号进行降噪;其次,对降噪后的信号进行ELMD分解,并得到一系列的乘积分量;最后,利用共振解调技术对各个PF分量进行包络分析,进而发现轴承故障频率。试验结果表明:将自相关降噪和ELMD分解方法结合用于实测轴承故障特征提取中,不仅可以降低信噪比,而且可以有效地提取轴承故障的特征频率。
[Abstract]:In order to extract the weak impulse characteristic signal which is submerged by strong noise in the vibration signal of the bearing, a fault diagnosis method based on the decomposition of local mean and autocorrelation noise reduction is proposed. First, the bearing fault signal is de-noised by autocorrelation function, secondly, the signal after denoising is decomposed by ELMD, and a series of product components are obtained. Finally, the resonant demodulation technique is used to analyze the envelope of each PF component, and the bearing fault frequency is found. The experimental results show that the combination of autocorrelation noise reduction and ELMD decomposition can not only reduce the signal-to-noise ratio but also extract the characteristic frequency of bearing fault effectively.
【作者单位】: 内蒙古科技大学机械工程学院;
【基金】:国家自然科学基金资助项目(51565046) 内蒙古自然科学基金资助项目(2015MS0512) 内蒙古高等学校科学研究资助项目(NJZY146)
【分类号】:TH133.3
[Abstract]:In order to extract the weak impulse characteristic signal which is submerged by strong noise in the vibration signal of the bearing, a fault diagnosis method based on the decomposition of local mean and autocorrelation noise reduction is proposed. First, the bearing fault signal is de-noised by autocorrelation function, secondly, the signal after denoising is decomposed by ELMD, and a series of product components are obtained. Finally, the resonant demodulation technique is used to analyze the envelope of each PF component, and the bearing fault frequency is found. The experimental results show that the combination of autocorrelation noise reduction and ELMD decomposition can not only reduce the signal-to-noise ratio but also extract the characteristic frequency of bearing fault effectively.
【作者单位】: 内蒙古科技大学机械工程学院;
【基金】:国家自然科学基金资助项目(51565046) 内蒙古自然科学基金资助项目(2015MS0512) 内蒙古高等学校科学研究资助项目(NJZY146)
【分类号】:TH133.3
【参考文献】
相关期刊论文 前10条
1 黄浩;吕勇;肖涵;侯高雁;;基于PCA和LMD分解的滚动轴承故障特征提取方法[J];仪表技术与传感器;2015年04期
2 胡振邦;许睦旬;姜歌东;张东升;;基于小波降噪和短时傅里叶变换的主轴突加不平衡非平稳信号分析[J];振动与冲击;2014年05期
3 钟先友;赵春华;陈保家;曾良才;;基于形态自相关和时频切片分析的轴承故障诊断方法[J];振动与冲击;2014年04期
4 王建国;吴林峰;秦绪华;;基于自相关分析和LMD的滚动轴承振动信号故障特征提取[J];中国机械工程;2014年02期
5 廖星智;万舟;熊新;;基于ELMD与LS-SVM的滚动轴承故障诊断方法[J];化工学报;2013年12期
6 明安波;褚福磊;张炜;;滚动轴承复合故障特征分离的小波-频谱自相关方法[J];机械工程学报;2013年03期
7 明安波;褚福磊;张炜;;滚动轴承故障特征提取的频谱自相关方法[J];机械工程学报;2012年19期
8 王龙;沈艳霞;季凌燕;;基于小波降噪和EMD方法的风力发电系统齿轮箱故障诊断[J];江南大学学报(自然科学版);2012年02期
9 程军圣;张亢;杨宇;;基于噪声辅助分析的总体局部均值分解方法[J];机械工程学报;2011年03期
10 雷衍斌;李舜酩;门秀花;沈\,
本文编号:2370739
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2370739.html