排列熵与核极限学习机在齿轮故障诊断中的应用
发布时间:2019-01-09 16:25
【摘要】:针对齿轮故障难提取和极限学习机(extreme learning machine,ELM)隐层节点数需要人为设定,致使齿轮故障分类模型准确度低、稳定性差的问题,提出基于核极限学习机(kernel extreme learning machine,K-ELM)的齿轮故障诊断方法。首先,将测得信号经经验模态分解(empirical mode decomposition,EMD)处理后得到一系列IMF本征模式分量,并提取各分量的排列熵(permutation entropy,PE)值组成高维特征向量集;然后利用高斯核函数的内积表达ELM输出函数,从而自适应确定隐层节点数;最后,将所得高维特征向量集作为K-ELM算法的输入建立核函数极限学习机齿轮故障分类模型,进行齿轮不同故障状态的分类辨识。实验结果表明:与SVM、ELM故障分类模型相比,核函数ELM滚动齿轮故障诊断分类模型具有更高的准确度和稳定性。
[Abstract]:Aiming at the problem that the hidden node points of gear fault extraction and (extreme learning machine,ELM) need to be set artificially, the accuracy of gear fault classification model is low and the stability of gear fault classification model is poor, a new method based on kernel limit learning machine (kernel extreme learning machine,) is proposed. The method of gear fault diagnosis based on K-ELM. First, a series of IMF eigenmode components are obtained after the measured signal is processed by empirical mode decomposition (empirical mode decomposition,EMD), and the permutation entropy (permutation entropy,PE) values of each component are extracted to form a high dimensional eigenvector set. Then the inner product of Gao Si kernel function is used to express the ELM output function, which adaptively determines the number of hidden layer nodes. Finally, the high dimensional eigenvector set is used as the input of K-ELM algorithm to establish the kernel function extreme learning machine gear fault classification model, and to classify and identify the different fault states of gear. The experimental results show that the kernel function ELM rolling gear fault diagnosis model has higher accuracy and stability than the SVM,ELM fault classification model.
【作者单位】: 内蒙古科技大学机械工程学院;
【基金】:国家自然科学基金(51565046) 内蒙古自然科学基金(2015MS0512) 内蒙古科技大学创新基金(2015QDL12)
【分类号】:TH132.41
[Abstract]:Aiming at the problem that the hidden node points of gear fault extraction and (extreme learning machine,ELM) need to be set artificially, the accuracy of gear fault classification model is low and the stability of gear fault classification model is poor, a new method based on kernel limit learning machine (kernel extreme learning machine,) is proposed. The method of gear fault diagnosis based on K-ELM. First, a series of IMF eigenmode components are obtained after the measured signal is processed by empirical mode decomposition (empirical mode decomposition,EMD), and the permutation entropy (permutation entropy,PE) values of each component are extracted to form a high dimensional eigenvector set. Then the inner product of Gao Si kernel function is used to express the ELM output function, which adaptively determines the number of hidden layer nodes. Finally, the high dimensional eigenvector set is used as the input of K-ELM algorithm to establish the kernel function extreme learning machine gear fault classification model, and to classify and identify the different fault states of gear. The experimental results show that the kernel function ELM rolling gear fault diagnosis model has higher accuracy and stability than the SVM,ELM fault classification model.
【作者单位】: 内蒙古科技大学机械工程学院;
【基金】:国家自然科学基金(51565046) 内蒙古自然科学基金(2015MS0512) 内蒙古科技大学创新基金(2015QDL12)
【分类号】:TH132.41
【参考文献】
相关期刊论文 前7条
1 周涛涛;朱显明;彭伟才;刘彦;;基于CEEMD和排列熵的故障数据小波阈值降噪方法[J];振动与冲击;2015年23期
2 吕忠;周强;周琨;陈立;申双葵;;基于遗传算法改进极限学习机的变压器故障诊断[J];高压电器;2015年08期
3 姚文坡;刘铁兵;戴加飞;王俊;;脑电信号的多尺度排列熵分析[J];物理学报;2014年07期
4 苑津莎;张利伟;王瑜;尚海昆;;基于极限学习机的变压器故障诊断方法研究[J];电测与仪表;2013年12期
5 郑近德;程军圣;杨宇;;多尺度排列熵及其在滚动轴承故障诊断中的应用[J];中国机械工程;2013年19期
6 马千里;卞春华;;改进排列熵方法及其在心率变异复杂度分析中的应用[J];中国组织工程研究与临床康复;2010年52期
7 张晓平;赵s,
本文编号:2405860
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2405860.html