涡旋压缩机曲轴部件静动态性能研究及优化
[Abstract]:Because of its low noise, high efficiency, compact structure, small number of parts and stable operation, scroll compressor is widely used in automotive air conditioning, refrigeration, engine pressurization and vacuum pump industries. The main parts of scroll compressor include moving vortex disk, static vortex disk, crankshaft, balance iron, frame, bearing and anti-rotation mechanism, etc. Their force and working condition will directly or indirectly affect the efficiency and stability of the compressor. Therefore, it is very important to study and analyze the mechanical characteristics of the core parts and optimize them, and it is also the premise to ensure the performance and reliability of the scroll compressor. In view of this situation, the crankshaft and crankshaft parts of a virtual prototype of a scroll compressor are studied in this paper, and the static and dynamic mechanical characteristics of crankshafts and crankshaft components in the working process are studied and analyzed by finite element analysis (ANSYS Workbench) platform. The distance between journal bearing and angular contact ball bearing on crankshaft, shaft diameter and shaft length of crankshaft are optimized. The main contents of the research are as follows: (1) according to the meshing principle of vortex profile and the theory of normal equidistant curve, the profile of dynamic vortex disk with variable cross-section is designed. At the same time, the finite element model of crankshaft-bearing system is established according to the profile equation of the vortex disk and the basic parameters to calculate the gas force (the normal gas force rF and the tangential gas force tF). (2) during the working process of the moving vortex disk, and at the same time, the finite element model of the crankshaft-bearing system is established. The bearing is simplified to different number of uniformly distributed springs, and the influence of the number and position of springs on the radial stiffness of crankshafts is investigated. Then the maximum gas force is taken as static load, and the stress and deformation of crankshaft-bearing system under static load are simulated and analyzed at the center of eccentric section of crankshaft, and the static stiffness of crankshaft is calculated. It provides a reference for the comparison of the optimization results of crankshaft-bearing system. (3) the dynamic characteristics of crankshaft and crankshaft components are simulated. First, the first six natural frequencies, mode shapes and vibration characteristics of crankshaft and crankshaft components are obtained by modal analysis. It is found that the first six natural frequencies of crankshaft and crankshaft components are higher than those of crankshaft components. This shows that the crankshaft and the crankshaft components are not easy to resonate under the actual excitation frequency and explore the factors that affect the natural frequency of the crankshaft. At the same time, on the basis of modal analysis, harmonic response analysis of different positions on crankshaft and crankshaft components is carried out, and the characteristics of stress and displacement varying with frequency are obtained and compared. (4) the span between bearings is optimized respectively. The maximum deflection of eccentric section of crankshaft is reduced, and the radial static stiffness of crankshaft is improved by optimizing the multi-objective parameters of span 1, shaft diameter 1R and shaft length 1l, and the axial diameter 1R and shaft length 1l of crankshaft are optimized in order to reduce the maximum deflection of eccentric section of crankshaft and improve the radial static stiffness of crankshaft. Through the above optimization design, the crankshaft parts have better static and dynamic performance, thus reducing the friction between the dynamic vortex disk and the static vortex disk, making the meshing of the dynamic and dynamic vortex disk more stable and effective, and prolonging the service life of the bearing.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TH45
【相似文献】
相关期刊论文 前10条
1 杨骅,屈宗长;涡旋压缩机泄漏研究综述[J];流体机械;2003年11期
2 彭斌,刘振全,李海生;变频涡旋压缩机测试系统的研究[J];化工自动化及仪表;2005年03期
3 彭斌;李超;刘振全;;天然气变频涡旋压缩机的密封研究[J];润滑与密封;2005年06期
4 彭斌;刘振全;张洪生;张力;;天然气变频涡旋压缩机的性能研究[J];兰州理工大学学报;2006年06期
5 陈荣;王文;;微型涡旋压缩机泄漏的理论计算[J];流体机械;2008年06期
6 戴金跃;张小军;;目前空调涡旋压缩机发展的技术动向[J];镇江高专学报;2008年03期
7 胡跃华;范海明;李海生;陈英华;李迎;;涡旋压缩机虚拟样机运动仿真的研究[J];煤矿机械;2009年02期
8 陈凯;刘益才;张建平;辛天龙;陈思明;;无油涡旋压缩机的关键技术综述及其发展展望[J];真空与低温;2011年01期
9 平贺正治;莫培杰;;车辆空调用涡旋压缩机[J];国外铁道车辆;1989年04期
10 Naoshi Uchikawa;莫培杰;;空调用涡旋压缩机[J];国外铁道车辆;1990年05期
相关会议论文 前10条
1 王廷奇;;内部高压涡旋压缩机用电机设计研究[A];走中国创造之路——2011中国制冷学会学术年会论文集[C];2011年
2 周英涛;郑星;;涡旋压缩机起动卸载结构的研究[A];中国制冷学会2009年学术年会论文集[C];2009年
3 廖全平;王晓刚;谢荣;;异常环境下涡旋压缩机应用[A];2001年全国空调器、电冰箱(柜)及压缩机学术交流会论文集[C];2001年
4 王宝龙;李先庭;彦启森;石文星;;涡旋压缩机通用几何模型研究[A];全国暖通空调制冷2004年学术年会资料摘要集(2)[C];2004年
5 赵远扬;李连生;束鹏程;;热泵用涡旋压缩机可靠性研究[A];第六届全国低温与制冷工程大会会议论文集[C];2003年
6 曹霞;陈芝久;;立式高压型全封闭涡旋压缩机的高机械效率分析[A];上海市制冷学会一九九九年学术年会论文集[C];1999年
7 曹霞;陈芝久;;任意实数圈涡旋压缩机的几何分析[A];上海市制冷学会一九九九年学术年会论文集[C];1999年
8 G.F.HUNDY;付伟纯;;谷轮冷冻涡旋压缩机及其应用[A];2000年中国食品冷藏链大会暨冷藏链配套装备展示会论文集[C];2000年
9 唐甜甜;汪军;束鹏程;;涡旋压缩机动力模型的研究[A];第六届全国低温与制冷工程大会会议论文集[C];2003年
10 刘强;樊水冲;何珊;;喷气增焓涡旋压缩机在空气源热泵热水器中的应用[A];第十三届全国热泵与系统节能技术大会论文集[C];2008年
相关重要报纸文章 前4条
1 记者 李晚成 通讯员 鄢立民;无油涡旋压缩机生产基地开建[N];江西日报;2010年
2 郭寿文;首个无油涡旋压缩机生产基地开建[N];中国工业报;2010年
3 谢荣;春兰5HP涡旋压缩机技术获突破[N];消费日报;2007年
4 陈晓平;延伸价值链[N];21世纪经济报道;2012年
相关博士学位论文 前6条
1 肖根福;无油涡旋压缩机腔内流场建模仿真及实验研究[D];南昌大学;2013年
2 吴昊;涡旋压缩机对称圆弧加直线修正型线理论研究[D];合肥工业大学;2015年
3 李超;驱动轴承内嵌式涡旋压缩机特性研究[D];兰州理工大学;2007年
4 余洋;涡旋压缩机动力特性及仿真模拟研究[D];兰州理工大学;2014年
5 刘兴旺;提高变频涡旋压缩机压缩性能的方法研究[D];兰州理工大学;2011年
6 赵Z,
本文编号:2447040
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2447040.html