机械加工制造过程能耗优化方法研究
[Abstract]:Manufacturing consumes a lot of energy in the process of transforming resources into products or services. As the main production process of manufacturing industry, machine tool is an important energy-consuming resource in the process of machining and manufacturing. In order to deal with global warming and improve the sustainability of manufacturing development, it is of great significance to optimize the energy consumption of mechanical manufacturing process for mechanical parts to save energy and realize low carbon manufacturing. In this paper, an integrated process planning and production scheduling method for optimization of energy consumption in machining manufacturing process is proposed. The modeling and quantitative evaluation of machine tool equipment resource state and the quantitative calculation of energy consumption in machining manufacturing process are emphatically studied, and the energy consumption of machining manufacturing process is optimized by means of integrated process planning and production scheduling. Integration of process planning and production scheduling for low carbon manufacturing. In view of the modeling and quantitative evaluation of machine tool equipment resource state, the difference between resource capability and state is discussed, and the formalized modeling description of machine tool equipment state is given, and then the quantitative evaluation index system of machine tool equipment state is established. Combined with the established machine tool state model and evaluation index system, the quantitative analysis of machine tool equipment state is realized by using the two-stage fuzzy comprehensive evaluation method based on analytic hierarchy process (AHP), and the total evaluation score of machine tool equipment state is obtained. Thus supporting process planning resource decision-making. Aiming at the problem of quantitative calculation of energy consumption in machining and manufacturing process, the energy consumption model of mechanical parts in machining process is established by means of reasonable assumption and dynamic element-based energy consumption model of machine tool. Aiming at the integration of process planning and production scheduling for low carbon manufacturing, this paper studies the integration model of process planning and production scheduling based on nonlinear process planning. Firstly, the characteristics of nonlinear process planning are analyzed. Combined with the theory of AOS tree, the process of establishing AOS tree to express it and how to obtain the optional process route of parts based on AOS tree of nonlinear process planning are introduced. Then, referring to the existing research on flexible job shop scheduling, through reasonable assumptions, the optimization objectives of selecting the comprehensive average state of machine tool, the total completion time and the energy consumption of machining manufacturing process with all machining tasks are established. The integrated model of process planning and production scheduling for low carbon manufacturing is presented, and its mathematical expression is given. The integration method of process planning and production scheduling based on intelligent algorithm is adopted. The integration model is solved by using the genetic algorithm of chromosome hierarchical coding. When the optional process plan generated for each part is timed by nonlinear process planning, the integrated model can weigh the optimization objective and decide the process route, machine tool selection scheme and corresponding production scheduling scheme suitable for each part. In order to verify the energy saving effect of the optimization method of energy consumption in machining manufacturing process, a case study was carried out. Based on the background of a manufacturing enterprise, the effectiveness of the proposed energy-saving method is verified by comparing the energy consumption of a batch of mechanical parts under the integration mode of process planning and production scheduling and the traditional serial working mode. The feasibility of integration of process planning and production scheduling based on chromosome hierarchical coding genetic algorithm is verified by benchmark examples. Finally, the main research contents and innovation points are summarized, and the future research direction is prospected and discussed.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TH186
【参考文献】
相关期刊论文 前10条
1 李聪波;李鹏宇;刘飞;崔龙国;税虹;;面向高效低碳的机械加工工艺路线多目标优化模型[J];机械工程学报;2014年17期
2 赵燕伟;张立萍;张景玲;王万良;王海燕;;加工装配式流水车间节能调度建模与优化[J];中国机械工程;2014年16期
3 王进峰;范孝良;张超炜;万书亭;;一种基于图的求解工艺规划和调度集成问题的蚁群优化算法(英文)[J];Chinese Journal of Chemical Engineering;2014年07期
4 杨海东;郑庆仁;刘国胜;郭建华;;基于差分遗传算法的置换流水车间低碳调度模型[J];中南大学学报(自然科学版);2013年11期
5 刘飞;王秋莲;刘高君;;机械加工系统能量效率研究的内容体系及发展趋势[J];机械工程学报;2013年19期
6 刘飞;王秋莲;;机械制造系统能效评价的特点、研究现状及发展趋势[J];中国机械工程;2013年11期
7 杨胜富;孙卫红;鲁文超;;复杂零件网络化制造的生产加工状态模型研究[J];机床与液压;2013年07期
8 王秋莲;刘飞;;数控机床多源能量流的系统数学模型[J];机械工程学报;2013年07期
9 刘飞;刘霜;;机床服役过程机电主传动系统的时段能量模型[J];机械工程学报;2012年21期
10 冀阿强;段晓峰;;面向云制造的制造资源模型研究[J];中国制造业信息化;2012年17期
相关博士学位论文 前9条
1 贾顺;面向低碳制造的机械加工工艺过程能量需求建模与智能计算研究[D];浙江大学;2014年
2 吕景祥;面向低碳制造的数控机床能量供给建模研究[D];浙江大学;2014年
3 何正为;离散制造车间生产现场建模及驾驶控制技术的研究[D];浙江大学;2013年
4 刘伟;智能CAPP系统中工艺路线和切削参数的决策研究[D];天津大学;2010年
5 李新宇;工艺规划与车间调度集成问题的求解方法研究[D];华中科技大学;2009年
6 鞠全勇;智能制造系统生产计划与车间调度的研究[D];南京航空航天大学;2007年
7 何彦;面向绿色制造的机械加工系统任务优化调度方法研究[D];重庆大学;2007年
8 曹华军;面向绿色制造的工艺规划技术研究[D];重庆大学;2004年
9 秦宝荣;智能CAPP系统的关键技术研究[D];南京航空航天大学;2003年
相关硕士学位论文 前5条
1 胡祥萍;云制造环境下基于语义的制造资源建模与管理研究[D];北京交通大学;2013年
2 周寅鹏;离散型车间制造过程状态监控管理系统研究[D];武汉理工大学;2013年
3 蔡杰;面向产品族的工艺与设备分配方案联合优化方法[D];浙江大学;2013年
4 赵亮;基于本体的型号产品制造资源建模[D];哈尔滨工业大学;2009年
5 肖士利;数控机床状态数据实时采集与监视系统的研究开发[D];南京航空航天大学;2008年
,本文编号:2468117
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2468117.html