无油涡旋压缩机关键技术研究
[Abstract]:Scroll compressor has the characteristics of stable operation, compact structure, low noise, high working efficiency and so on. Compared with other forms of compressor, scroll compressor has incomparable advantages in many aspects. With the increasing attention to environmental pollution in the world, oil-free scroll compressors have gradually become the focus of compressor industry. At present, all the oil-free scroll compressors change the oil-lubricated bearings into self-lubricating bearings, and apply a layer of self-lubricating material to the surface of the anti-rotation device and the moving scroll disk and the contact surface of the frame by coating technology. So researchers at home and abroad focus on the life of self-lubricating materials and the heating of oil-free scroll compressors. Maglev technology has the advantages of no contact, no friction, no lubrication and so on. It can be used in oil-free scroll compressor to solve the problems existing in traditional equipment. According to the characteristics of compact structure and simple control system of magnetic drive technology, a new type of oil-free scroll compressor, magnetic drive oil-free scroll compressor, is proposed, and the design idea and working principle of the new type of scroll compressor are explained. Based on the study of the theoretical formulas of the parameters of the scroll compressor and the magnetic characteristics, the different profile schemes of the new compressor are optimized, and the compression line under the scheme is modified. According to the parameter analysis and calculation of the back pressure and driving force needed by the new compressor, the magnetic circuit and magnetic force of different size back pressure elements and different types of driving elements are studied by using finite element software, and the most suitable components are selected. Because the force of the moving vortex disk is the relationship between the force and the rotation angle, and the driving force is the relationship between the force and the air gap, the theoretical formula of the relationship between the force and the air gap of the moving vortex disk is derived by the induction formula. The magnetic force of the new compressor driving element is checked by the theoretical formula, and it is shown that the radial force has little influence on the design of the scroll compression driving element. In order to reduce the vibration of the moving vortex disk, the sixth order constrained modal analysis of the moving vortex disk is carried out. The control part of the new compressor is to build the dynamic model of the new compressor through the differential mathematical model of electromagnet and the mathematical model of compressor compression resistance, and to establish the state space equation. The linear correlation of observable matrix is obtained, and it is concluded that the system is controllable observable system. The response characteristics and displacement characteristics of the state space equation of the system are simulated and analyzed by using numerical analysis software, and the optimal control points of the control system are found out by using LQR control strategy. The necessity of simulation of displacement characteristics of a new type of oil-free scroll compressor is also explained. According to the heavy task and lack of visual design tool in the research and development process of scroll compressor, the auxiliary design software of magnetic driven oil-free scroll compressor is developed, and the architecture design and work flow of the software are explained. Some programs running in the background of the software are introduced in detail, and the application method and function of the software are explained, which provides a reference for the design and research of magnetic driven oil-free scroll compressor or scroll compression.
【学位授予单位】:沈阳工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH45
【相似文献】
相关期刊论文 前10条
1 杨骅,屈宗长;涡旋压缩机泄漏研究综述[J];流体机械;2003年11期
2 彭斌,刘振全,李海生;变频涡旋压缩机测试系统的研究[J];化工自动化及仪表;2005年03期
3 彭斌;李超;刘振全;;天然气变频涡旋压缩机的密封研究[J];润滑与密封;2005年06期
4 彭斌;刘振全;张洪生;张力;;天然气变频涡旋压缩机的性能研究[J];兰州理工大学学报;2006年06期
5 陈荣;王文;;微型涡旋压缩机泄漏的理论计算[J];流体机械;2008年06期
6 戴金跃;张小军;;目前空调涡旋压缩机发展的技术动向[J];镇江高专学报;2008年03期
7 胡跃华;范海明;李海生;陈英华;李迎;;涡旋压缩机虚拟样机运动仿真的研究[J];煤矿机械;2009年02期
8 陈凯;刘益才;张建平;辛天龙;陈思明;;无油涡旋压缩机的关键技术综述及其发展展望[J];真空与低温;2011年01期
9 平贺正治;莫培杰;;车辆空调用涡旋压缩机[J];国外铁道车辆;1989年04期
10 Naoshi Uchikawa;莫培杰;;空调用涡旋压缩机[J];国外铁道车辆;1990年05期
相关会议论文 前10条
1 王廷奇;;内部高压涡旋压缩机用电机设计研究[A];走中国创造之路——2011中国制冷学会学术年会论文集[C];2011年
2 周英涛;郑星;;涡旋压缩机起动卸载结构的研究[A];中国制冷学会2009年学术年会论文集[C];2009年
3 廖全平;王晓刚;谢荣;;异常环境下涡旋压缩机应用[A];2001年全国空调器、电冰箱(柜)及压缩机学术交流会论文集[C];2001年
4 王宝龙;李先庭;彦启森;石文星;;涡旋压缩机通用几何模型研究[A];全国暖通空调制冷2004年学术年会资料摘要集(2)[C];2004年
5 赵远扬;李连生;束鹏程;;热泵用涡旋压缩机可靠性研究[A];第六届全国低温与制冷工程大会会议论文集[C];2003年
6 曹霞;陈芝久;;立式高压型全封闭涡旋压缩机的高机械效率分析[A];上海市制冷学会一九九九年学术年会论文集[C];1999年
7 曹霞;陈芝久;;任意实数圈涡旋压缩机的几何分析[A];上海市制冷学会一九九九年学术年会论文集[C];1999年
8 G.F.HUNDY;付伟纯;;谷轮冷冻涡旋压缩机及其应用[A];2000年中国食品冷藏链大会暨冷藏链配套装备展示会论文集[C];2000年
9 唐甜甜;汪军;束鹏程;;涡旋压缩机动力模型的研究[A];第六届全国低温与制冷工程大会会议论文集[C];2003年
10 刘强;樊水冲;何珊;;喷气增焓涡旋压缩机在空气源热泵热水器中的应用[A];第十三届全国热泵与系统节能技术大会论文集[C];2008年
相关重要报纸文章 前4条
1 记者 李晚成 通讯员 鄢立民;无油涡旋压缩机生产基地开建[N];江西日报;2010年
2 郭寿文;首个无油涡旋压缩机生产基地开建[N];中国工业报;2010年
3 谢荣;春兰5HP涡旋压缩机技术获突破[N];消费日报;2007年
4 陈晓平;延伸价值链[N];21世纪经济报道;2012年
相关博士学位论文 前6条
1 肖根福;无油涡旋压缩机腔内流场建模仿真及实验研究[D];南昌大学;2013年
2 李超;驱动轴承内嵌式涡旋压缩机特性研究[D];兰州理工大学;2007年
3 余洋;涡旋压缩机动力特性及仿真模拟研究[D];兰州理工大学;2014年
4 刘兴旺;提高变频涡旋压缩机压缩性能的方法研究[D];兰州理工大学;2011年
5 赵Z,
本文编号:2482415
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2482415.html