基于粒子群算法的LQR直线二级倒立摆的控制研究
[Abstract]:Inverted pendulum system is a typical representative of unstable underdriven system because of its nonlinear, high order, multivariable, strong coupling and so on. Inverted pendulum system can represent the basic model of control objects in various application fields abstractly, and can be used as an ideal multi-intelligent control theory to verify control application platform, so as to realize inverted pendulum system in the field of aerospace. The research on stability control of inverted pendulum is very important because of its wide application in the field of intelligent machine. In this paper, the control system of linear two-stage inverted pendulum is taken as the research object. Firstly, the physical mechanism of the straight-line two-stage inverted pendulum is analyzed and the mathematical model is established, and then the linear analysis of the mathematical model of the straight-line two-stage inverted pendulum is carried out. The linear state space expression of the system is obtained. Secondly, the control simulation experiment of PID controller and LQR controller to realize linear two-stage inverted pendulum is compared and analyzed. The results show that the number of controllers realized by PID is large and the control effect is poor. However, the accuracy of linear two-stage inverted pendulum control realized by LQR controller is better than that of PID control, but the parameter selection process of LQR controller is empirical, and the number of optimized parameters is small, resulting in low control accuracy. Finally, aiming at the parameter selection of LQR controller, particle swarm optimization algorithm is used to optimize the parameters of LQR controller, and a LQR control is used to realize the displacement of trolley, the speed of trolley, the angle and angular velocity of swinging rod 1. The parameters of swing rod 2 angle and angular velocity are optimized. It is verified on the experimental equipment platform that the LQR controller optimized by particle swarm optimization improves the stability and accuracy of the linear two-stage inverted pendulum control, realizes the self-recovery state of the swinging rod after deviating from equilibrium, and maintains it in a balanced and stable state. The experimental results show that the particle swarm optimization algorithm realizes the optimization of LQR linear two-stage inverted pendulum control system, which is of great theoretical significance to improve the stability of linear two-stage inverted pendulum control system. It lays a theoretical foundation for the practical application of inverted pendulum system and has certain application value.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH112
【参考文献】
相关期刊论文 前10条
1 路恩;杨雪锋;李威;刘玉飞;鞠锦勇;;基于混合粒子群算法的单杆柔性臂LQR位置控制优化设计[J];组合机床与自动化加工技术;2015年09期
2 陈聪;赵莹;高金凤;;基于一级倒立摆的PID与LQR控制算法对比分析[J];价值工程;2015年18期
3 石祥;许哲;何青义;田卡;;轮式倒立摆的数学建模及状态反馈控制[J];机电产品开发与创新;2014年01期
4 刘白雁;曾镛;;基于分段遗传算法的倒立摆摆起控制研究[J];控制工程;2010年05期
5 何俊强;任开春;武明亮;甘剑锋;高传平;;基于PSO的二级倒立摆LQR最优控制器设计[J];工业控制计算机;2010年06期
6 徐春梅;杨平;彭道刚;;直线二级倒立摆的状态反馈实时控制[J];机电一体化;2008年03期
7 胡中功;李静;;群智能算法的研究进展[J];自动化技术与应用;2008年02期
8 柳志远;张湘平;;基于遗传算法PID的旋转式倒立摆控制[J];计算机技术与发展;2008年02期
9 蔡军;蔡芳;陈勇;;基于模糊控制二级倒立摆实验装置数模的建立[J];重庆大学学报(自然科学版);2006年09期
10 关世勇;魏衡华;陈星;;拟人智能控制在二轮小车倒立摆系统中的应用[J];控制工程;2006年05期
相关博士学位论文 前1条
1 刘建华;粒子群算法的基本理论及其改进研究[D];中南大学;2009年
相关硕士学位论文 前10条
1 郝爽;三级倒立摆的RBF-ARX建模与云推理控制器设计[D];燕山大学;2016年
2 赵群;基于改进混合蚁群算法的车辆路径问题研究[D];合肥工业大学;2015年
3 马婷婷;基于直线二级倒立摆稳定控制方法的研究[D];西安电子科技大学;2014年
4 汤乐;倒立摆系统建模与控制方法研究[D];河南大学;2013年
5 肖玉姣;直线二级倒立摆的RBF-ARX建模和预测控制研究[D];中南大学;2013年
6 王哲;基于倒立摆系统的模糊控制研究[D];哈尔滨理工大学;2012年
7 程会锋;倒立摆系统自动摆起控制的研究[D];大连理工大学;2009年
8 张志坤;基于模糊神经网络的倒立摆控制技术研究[D];扬州大学;2009年
9 张彬;小车倒立摆系统摆起与稳定控制研究[D];青岛大学;2009年
10 刘时鹏;MATLAB环境下直线单级倒立摆系统实时控制实验的研究与设计[D];重庆大学;2004年
,本文编号:2492268
本文链接:https://www.wllwen.com/jixiegongchenglunwen/2492268.html