不同几何构型下液压管路瞬态流动研究
发布时间:2021-02-23 13:57
液压系统由多个部件和不同几何形状的管路组成,从阀门和喷嘴到孔口。当流体通过液压系统的不同部件时,它面临各种障碍和条件,如突然收缩,膨胀或摩擦。这种情况导致不稳定和湍流的流动条件,这对流动特性以及液压管的固体产生相当大的影响。为了避免由于这种湍流引起的任何不利影响,主要关注点应该是了解它对该点流量参数的影响。这项研究的目的是研究在不同流动条件的影响下流动的各种几何形状管路的不同液压流体的层流和湍流情况。设计了各种几何形状管路,并且在不同的边界条件下通过这些几何形状完成流体流动的分析。从简单的直管开始,研究入口和出口的速度分布。弯头也被添加到直管中以分析突然障碍物在流体运动路径中的影响。之后,在管道几何中添加了多个弯曲,并且逐一研究了所有弯曲处的压力梯度的性质。在管道内添加了挡板,为流体提供了非常小的空间,通过在每个连续挡板上添加侧面上的开口,流动情况更为丰富多变。在出口处添加孔口以及稍后在管道的中间部分中的孔板提供关于湍流响应和压力脉冲的非常有意义的见解。加入一个狭窄的管子,带有一个大的入口部分,以模拟静脉收缩现象。Vena contracta的使用者的位置也基本上使用Fluent解算器...
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:118 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Source and Significance
1.2 Research Spectrum and Literature Review
1.2.1 Research History
1.2.2 Research Abroad
1.2.3 Research in China
1.3 Water Hammer Equation– An Analysis
1.4 Transient Flow Equations
1.5 Main Research Contents
Chapter 2 Fluid Flow in Simple Pipe Geometries
2.1 General steps for a CFD based analysis
2.1.1 Design of Geometry
2.1.2 Meshing
2.1.3 Solver Setup
2.1.4 Post Processing
2.2 Analysis and Results
2.2.1 Modelling
2.2.2 Meshing
2.2.3 Solver Settings/ Setup
2.2.4 General Settings
2.2.5 Viscous Models
2.2.6 Pressure-Velocity Coupling
2.2.7 Solution Calculation
2.2.8 Results
2.3 Pipe with Bend
2.3.1 Laminar flow
2.3.2 Turbulent Flow
2.4 Chapter Summary
Chapter 3 Flow with Intermittent Obstructions
3.1 Recap
3.2 S-Shaped Pipe
3.2.1 Geometry
3.2.2 Meshing
3.2.3 Solver settings
3.2.4 Results
3.3 Straight Pipe with baffle s
3.3.1 Geometry
3.3.2 Meshing
3.3.3 Solver Settings
3.3.4 Results
3.4 Straight Pipe with Orifice
3.4.1 Geometry
3.4.2 Meshing
3.4.3 Flow Cases and Results
3.4.4 Slow velocity,Steady solver,Laminar flow
3.4.5 Steady solver,Turbulent flow
3.4.6 Transient Solver,turbulent flow
3.5 Chapter Summary
Chapter 4 Sudden Contraction,Ripples and Verification from the Experimental Data
4.1 Orifice plate in the center of straight pipe
4.1.1 Geometry
4.1.2 Meshing
4.1.3 Flow Cases and Results
4.2 Formation of Vena-Contracta
4.2.1 Geometry
4.2.2 Meshing
4.2.3 Solver settings and Results
4.3 Adding ripples in the inlet velocity
4.3.1 Equal inlet and outlet sizes
4.3.2 Orifice at the Outlet
4.4 Verification with the Experimental Data
4.4.1 Test Rig
4.4.2 Design and Meshing
4.4.3 Boundary Conditions
4.4.4 Results and Comparison with Experimental Data
4.5 Chapter Summary
Conclusion
结论
References
Acknowledgement
【参考文献】:
期刊论文
[1]伴随气泡和气穴低压管路瞬态的建模与分析[J]. 蒋丹,李松晶,包钢. 航空动力学报. 2007(12)
[2]采用MATLAB Simulink的液压管路瞬态压力脉动分析[J]. 李松晶,鲍文. 工程力学. 2006(09)
[3]含气泡和气穴的液压管路瞬态实验研究[J]. 李松晶,朱冬. 机床与液压. 2006(08)
[4]有压输水管道系统含气水锤研究[J]. 郑源,索丽生,屈波,张健,刘德有. 河海大学学报(自然科学版). 2005(03)
[5]液压系统中流体压强瞬态现象的实验研究与数值模拟[J]. 傅新,杨华勇,鲍敏,高红. 机床与液压. 2000(05)
本文编号:3047701
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:118 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Source and Significance
1.2 Research Spectrum and Literature Review
1.2.1 Research History
1.2.2 Research Abroad
1.2.3 Research in China
1.3 Water Hammer Equation– An Analysis
1.4 Transient Flow Equations
1.5 Main Research Contents
Chapter 2 Fluid Flow in Simple Pipe Geometries
2.1 General steps for a CFD based analysis
2.1.1 Design of Geometry
2.1.2 Meshing
2.1.3 Solver Setup
2.1.4 Post Processing
2.2 Analysis and Results
2.2.1 Modelling
2.2.2 Meshing
2.2.3 Solver Settings/ Setup
2.2.4 General Settings
2.2.5 Viscous Models
2.2.6 Pressure-Velocity Coupling
2.2.7 Solution Calculation
2.2.8 Results
2.3 Pipe with Bend
2.3.1 Laminar flow
2.3.2 Turbulent Flow
2.4 Chapter Summary
Chapter 3 Flow with Intermittent Obstructions
3.1 Recap
3.2 S-Shaped Pipe
3.2.1 Geometry
3.2.2 Meshing
3.2.3 Solver settings
3.2.4 Results
3.3 Straight Pipe with baffle s
3.3.1 Geometry
3.3.2 Meshing
3.3.3 Solver Settings
3.3.4 Results
3.4 Straight Pipe with Orifice
3.4.1 Geometry
3.4.2 Meshing
3.4.3 Flow Cases and Results
3.4.4 Slow velocity,Steady solver,Laminar flow
3.4.5 Steady solver,Turbulent flow
3.4.6 Transient Solver,turbulent flow
3.5 Chapter Summary
Chapter 4 Sudden Contraction,Ripples and Verification from the Experimental Data
4.1 Orifice plate in the center of straight pipe
4.1.1 Geometry
4.1.2 Meshing
4.1.3 Flow Cases and Results
4.2 Formation of Vena-Contracta
4.2.1 Geometry
4.2.2 Meshing
4.2.3 Solver settings and Results
4.3 Adding ripples in the inlet velocity
4.3.1 Equal inlet and outlet sizes
4.3.2 Orifice at the Outlet
4.4 Verification with the Experimental Data
4.4.1 Test Rig
4.4.2 Design and Meshing
4.4.3 Boundary Conditions
4.4.4 Results and Comparison with Experimental Data
4.5 Chapter Summary
Conclusion
结论
References
Acknowledgement
【参考文献】:
期刊论文
[1]伴随气泡和气穴低压管路瞬态的建模与分析[J]. 蒋丹,李松晶,包钢. 航空动力学报. 2007(12)
[2]采用MATLAB Simulink的液压管路瞬态压力脉动分析[J]. 李松晶,鲍文. 工程力学. 2006(09)
[3]含气泡和气穴的液压管路瞬态实验研究[J]. 李松晶,朱冬. 机床与液压. 2006(08)
[4]有压输水管道系统含气水锤研究[J]. 郑源,索丽生,屈波,张健,刘德有. 河海大学学报(自然科学版). 2005(03)
[5]液压系统中流体压强瞬态现象的实验研究与数值模拟[J]. 傅新,杨华勇,鲍敏,高红. 机床与液压. 2000(05)
本文编号:3047701
本文链接:https://www.wllwen.com/jixiegongchenglunwen/3047701.html