凸轮机构多项式运动规律的设计方法及仿真分析
发布时间:2021-03-04 16:32
通过对基本边界条件的多项式运动规律的理论分析,推导出高次多项式运动规律的通用方程,以及各参数的计算公式。针对具有附加约束条件的凸轮机构,提出一种多项式运动规律的分段设计方法,对求解出的多项式运动规律的位移、速度、加速度进行仿真分析,并与目前通用的圆弧拼接的改进型等速运动规律进行对比,证实了该设计方法的可靠性。
【文章来源】:机械设计与制造工程. 2020,19(08)
【文章页数】:4 页
【部分图文】:
凸轮转角和推杆位移曲线
设定升—停—回型凸轮,运动循环图如图2所示,图中δ1为凸轮升程转角,δ2为停程转角,δ3为回程转角。回程时,凸轮旋转δ31,推杆位移为h1;凸轮继续旋转δ32,推杆位移为h2;凸轮最后旋转δ33,推杆位移为h3。其中h1+h2+h3=h,δ31+δ32+δ33=δ3。升程段没有特殊的运动要求,根据多项式运动方程(8)正常求解即可。回程段时要求先进行一段加速运动,然后进行一段匀速运动,最后再进行一段减速运动,对于这样的运动特性,目前通常采用圆弧拼接的改进型等速运动规律[6]。该运动规律的缺点是加速度不连续,会造成柔性冲击。
在设计完多项式运动规律后,对其进行仿真分析,以确保该运动规律符合凸轮设计的基本要求以及附加的特殊需求。对各已知项进行赋值,通过第2节计算方法得出多项式运动规律方程,然后将运动规律方程导入仿真软件,并与圆弧拼接的改进型等速运动规律进行对比。图3中曲线1为多项式运动规律生成的滚子中心轨迹线,曲线2为用圆弧拼接的改进型等速运动规律生成的滚子中心轨迹线。
【参考文献】:
期刊论文
[1]凸轮机构六次多项式运动规律的理论分析[J]. 赖晓桦. 机械传动. 2010(09)
[2]凸轮从动件运动规律的分段建模方法及设计系统研究[J]. 朱家诚,汪进,吴天星,王勇. 机械设计. 2008(07)
[3]凸轮机构从动件运动规律的通用表达式[J]. 郑晨升,葛正浩,彭国勋. 机械科学与技术. 1996(01)
本文编号:3063538
【文章来源】:机械设计与制造工程. 2020,19(08)
【文章页数】:4 页
【部分图文】:
凸轮转角和推杆位移曲线
设定升—停—回型凸轮,运动循环图如图2所示,图中δ1为凸轮升程转角,δ2为停程转角,δ3为回程转角。回程时,凸轮旋转δ31,推杆位移为h1;凸轮继续旋转δ32,推杆位移为h2;凸轮最后旋转δ33,推杆位移为h3。其中h1+h2+h3=h,δ31+δ32+δ33=δ3。升程段没有特殊的运动要求,根据多项式运动方程(8)正常求解即可。回程段时要求先进行一段加速运动,然后进行一段匀速运动,最后再进行一段减速运动,对于这样的运动特性,目前通常采用圆弧拼接的改进型等速运动规律[6]。该运动规律的缺点是加速度不连续,会造成柔性冲击。
在设计完多项式运动规律后,对其进行仿真分析,以确保该运动规律符合凸轮设计的基本要求以及附加的特殊需求。对各已知项进行赋值,通过第2节计算方法得出多项式运动规律方程,然后将运动规律方程导入仿真软件,并与圆弧拼接的改进型等速运动规律进行对比。图3中曲线1为多项式运动规律生成的滚子中心轨迹线,曲线2为用圆弧拼接的改进型等速运动规律生成的滚子中心轨迹线。
【参考文献】:
期刊论文
[1]凸轮机构六次多项式运动规律的理论分析[J]. 赖晓桦. 机械传动. 2010(09)
[2]凸轮从动件运动规律的分段建模方法及设计系统研究[J]. 朱家诚,汪进,吴天星,王勇. 机械设计. 2008(07)
[3]凸轮机构从动件运动规律的通用表达式[J]. 郑晨升,葛正浩,彭国勋. 机械科学与技术. 1996(01)
本文编号:3063538
本文链接:https://www.wllwen.com/jixiegongchenglunwen/3063538.html