基于改进MP的稀疏表示快速算法及其滚动轴承故障特征提取应用
本文关键词:基于改进MP的稀疏表示快速算法及其滚动轴承故障特征提取应用
更多相关文章: 滚动轴承 匹配追踪 字典构造 FFT 特征提取
【摘要】:在恒定转速情况下,旋转机械中滚动轴承的局部故障往往导致周期性冲击,从而产生周期性瞬态振动信号。对局部故障的瞬态特征提取一直是故障检测的关键问题。基于匹配追踪(Matching Pursuit,MP)算法的稀疏分解是一种信号自适应分解算法,是强噪声背景下微弱特征提取的有效方法之一。针对滚动轴承故障振动信号稀疏表示过完备字典的选择与构造问题,基于相关滤波法优选与冲击波形匹配的Laplace小波原子构造稀疏表示中的过完备字典;针对基本匹配追踪算法计算量大、效率低的问题,结合FFT快速运算特性,通过互相关运算替换基本匹配追踪算法中的内积运算,研究基于改进MP的稀疏表示快速算法,进而提高计算效率。仿真与滚动轴承故障实验分析结果表明该算法能准确的提取滚动轴承故障特征且计算效率高。
【作者单位】: 苏州大学城市轨道交通学院;
【关键词】: 滚动轴承 匹配追踪 字典构造 FFT 特征提取
【基金】:国家自然科学基金(51405321) 江苏省自然科学基金(BK20140339) 江苏省高校自然科学基金(14KJB460023) 江苏省大学生创新训练(201410285103X) 苏州市应用基础研究(SYG201511)
【分类号】:TH133.33
【正文快照】: 作为机械设备的关键零部件,滚动轴承往往长期运转于高温、高压及复杂的力学环境下,极易发生故障。以航空发动机为例,高压压气机前轴承失效是致使发动机空中停车的主要原因之一,而航空发动机中的中介轴承一旦失效,会在极短时间内导致发动机主轴抱轴裂断,因此,对滚动轴承的运行
【相似文献】
中国期刊全文数据库 前10条
1 陈思宝;赵令;罗斌;;局部保持的稀疏表示字典学习[J];华南理工大学学报(自然科学版);2014年01期
2 郑轶;蔡体健;;稀疏表示的人脸识别及其优化算法[J];华东交通大学学报;2012年01期
3 段菲;章毓晋;;一种面向稀疏表示的最大间隔字典学习算法[J];清华大学学报(自然科学版);2012年04期
4 张佳宇;彭力;;基于联合动态稀疏表示方法的多图像人脸识别算法[J];江南大学学报(自然科学版);2014年03期
5 查长军;孙南;张成;韦穗;;基于稀疏表示的特定目标识别[J];吉林大学学报(工学版);2013年01期
6 朱启兵;杨宝;黄敏;;基于核映射稀疏表示分类的轴承故障诊断[J];振动与冲击;2013年11期
7 王国权;张扬;李彦锋;王丽芬;马晓梅;;一种基于稀疏表示的图像去噪算法[J];工业仪表与自动化装置;2013年05期
8 耿耀君;张军英;;一种基于投影稀疏表示的基因选择方法[J];哈尔滨工程大学学报;2011年08期
9 翟懿奎;甘俊英;徐颖;曾军英;;快速稀疏表示指背关节纹识别及其并行实现[J];吉林大学学报(工学版);2012年S1期
10 詹永照;张珊珊;成科扬;;基于非线性可鉴别的稀疏表示视频语义分析方法[J];江苏大学学报(自然科学版);2013年06期
中国重要会议论文全文数据库 前3条
1 何爱香;刘玉春;魏广芬;;基于稀疏表示的煤矸界面识别研究[A];虚拟运营与云计算——第十八届全国青年通信学术年会论文集(上册)[C];2013年
2 樊亚翔;孙浩;周石琳;邹焕新;;基于元样本稀疏表示的多视角目标识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年
3 葛凤翔;任岁玲;郭鑫;郭良浩;孙波;;微弱信号处理及其研究进展[A];中国声学学会水声学分会2013年全国水声学学术会议论文集[C];2013年
中国博士学位论文全文数据库 前10条
1 李进明;基于稀疏表示的图像超分辨率重建方法研究[D];重庆大学;2015年
2 王亚宁;基于信号稀疏表示的电机故障诊断研究[D];河北工业大学;2014年
3 姚明海;视频异常事件检测与认证方法研究[D];东北师范大学;2015年
4 黄国华;蛋白质翻译后修饰位点与药物适应症预测方法研究[D];上海大学;2015年
5 王瑾;基于稀疏表示的数据收集、复原与压缩研究[D];北京工业大学;2015年
6 王文卿;基于融合框架与稀疏表示的遥感影像锐化[D];西安电子科技大学;2015年
7 解虎;高维小样本阵列自适应信号处理方法研究[D];西安电子科技大学;2015年
8 秦振涛;基于稀疏表示及字典学习遥感图像处理关键技术研究[D];成都理工大学;2015年
9 薛明;基于稀疏表示的在线目标跟踪研究[D];上海交通大学;2014年
10 孙乐;空谱联合先验的高光谱图像解混与分类方法[D];南京理工大学;2014年
中国硕士学位论文全文数据库 前10条
1 王道文;基于稀疏表示的目标跟踪算法研究[D];华南理工大学;2015年
2 李哲;基于稀疏表示和LS-SVM的心电信号分类[D];河北大学;2015年
3 孙雪青;Shearlet变换和稀疏表示相结合的甲状腺结节图像融合[D];河北大学;2015年
4 吴丽璇;基于稀疏表示的微聚焦X射线图像去噪方法[D];华南理工大学;2015年
5 赵孝磊;基于图像分块稀疏表示的人脸识别算法研究[D];南京信息工程大学;2015年
6 黄志明;基于辨别式稀疏字典学习的视觉追踪算法研究[D];华南理工大学;2015年
7 张铃华;非约束环境下的稀疏表示人脸识别算法研究[D];南京信息工程大学;2015年
8 贺妍斐;基于稀疏表示与自适应倒易晶胞的遥感图像复原方法研究[D];南京信息工程大学;2015年
9 杨烁;电能质量扰动信号的稀疏表示/压缩采样研究[D];西南交通大学;2015年
10 应艳丽;基于低秩稀疏表示的目标跟踪算法研究[D];西南交通大学;2015年
,本文编号:881169
本文链接:https://www.wllwen.com/jixiegongchenglunwen/881169.html