水平管道内甲烷—煤尘复合爆炸压力研究
本文选题:水平管道 切入点:甲烷 出处:《中北大学》2013年硕士论文 论文类型:学位论文
【摘要】:随着我国城镇化速度的加快,人们对煤炭的需求与消耗也与日俱增,煤炭开采量增加。虽然国家对煤矿加强了监督管理,增大了科技投入,但时有发生的重特大煤矿瓦斯、煤尘爆炸事故让人触目惊心,给人们造成了巨大身心伤害,给国家造成巨大经济损失。由于煤矿巷道瓦斯和煤尘是共存的,所以本文利用长0.7m、直径140mm的密闭水平管道,对甲烷和煤尘混合爆炸产生的压力和压力上升速率进行了详细的试验研究,从而为煤矿瓦斯、煤尘爆炸防治提供理论基础。 利用本试验装置的试验结果表明: (1)在固定甲烷浓度的条件下,最大爆炸压力值均随着煤尘浓度的增加先增大后减小,存在一个峰值点,不同的甲烷浓度所对应的产生此峰值点的煤尘浓度不同。最大压力上升速率也出现了与最大爆炸压力相同的规律;在煤尘浓度固定的条件下,复合爆炸最大爆炸压力值随甲烷浓度的增加先增大,后减小,出现峰值,峰值点对应的最危险的甲烷浓度均为5%。 (2)煤尘粒径对甲烷-煤尘复合爆炸最大爆炸压力和最大压力上升速率有明显影响。甲烷-煤尘复合爆炸最大爆炸压力值和最大压力上升速率值均随着煤尘粒径的减小而增大,煤尘粒径在43μm~125μm范围内增大趋势呈线性关系。 (3)点火延迟时间对甲烷-煤尘复合爆炸最大爆炸压力和最大压力上升速率有重要影响。点火延迟时间在50ms~120ms范围内,甲烷-煤尘复合爆炸最大爆炸压力值和最大压力上升速率值随着点火延迟时间的增加先增大后减小,存在峰值点。煤尘粒径不同,产生此峰值点的点火延迟时间不同。 (4)对实验数据进行拟合,通过拟合方程可知:在一定范围内,甲烷-煤尘复合爆炸最大爆炸压力(P_(max))和最大压力上升速率(dP/dT)_(max)与煤尘浓度(C_1)、煤尘粒径(D)拟合方程分别满足二次函数关系、线性关系;甲烷-煤尘复合爆炸最大爆炸压力(P_(max))与甲烷浓度(C_2)拟合方程满足三次函数关系。 (5)通过甲烷-煤尘复合爆炸试验研究得知,在本试验装置中甲烷-煤尘复合爆炸的最危险条件是:甲烷浓度5%、煤尘浓度400g/m~3、煤尘粒径43μm、点火延迟时间100ms,在此条件下,甲烷-煤尘复合爆炸最大爆炸压力值可达0.69MPa,最大压力上升速率值可达15.82MPa/s。
[Abstract]:With the acceleration of urbanization in our country, the demand and consumption of coal is increasing day by day, and the amount of coal mining is increasing. Although the state has strengthened the supervision and management of coal mines and increased the investment in science and technology, the gas in heavy and large coal mines that occur from time to time, Coal dust explosion accident is shocking, has caused great physical and mental injury to people, has caused huge economic loss to the country. Because the gas and coal dust in coal mine roadway coexist, so this paper uses the closed horizontal pipe which is 0.7m in length and 140 mm in diameter. The pressure and pressure rising rate caused by mixed explosion of methane and coal dust are studied in detail, which provides a theoretical basis for the prevention and control of coal mine gas and coal dust explosion. The experimental results show that:. 1) under the condition of fixed methane concentration, the maximum explosion pressure increases first and then decreases with the increase of coal dust concentration, and there exists a peak point. The concentration of coal dust corresponding to different methane concentrations is different. The maximum pressure rise rate is the same as the maximum explosion pressure, and under the condition of fixed coal dust concentration, With the increase of methane concentration, the maximum explosion pressure of the composite explosion increases first, then decreases, and reaches the peak value. The most dangerous methane concentration corresponding to the peak value is 5. (2) the particle size of coal dust has obvious influence on the maximum explosion pressure and the maximum pressure rising rate of methane coal dust composite explosion. The maximum explosion pressure value and the maximum pressure rise rate value of methane coal dust composite explosion increase with the decrease of coal dust particle size. The coal dust particle size increases linearly in the range of 43 渭 m ~ 125 渭 m. The ignition delay time has an important effect on the maximum explosion pressure and the maximum pressure rise rate in the methane-coal dust composite explosion. The ignition delay time is in the range of 50 Ms or 120 Ms. With the increase of ignition delay time, the maximum explosion pressure and the maximum pressure rise rate of methane coal dust composite explosion first increase and then decrease, and there is a peak point. The ignition delay time of the peak point is different with different particle size of coal dust. 4) fitting the experimental data, the fitting equation shows that: within a certain range, The maximum explosion pressure (PSP) and the maximum pressure rise rate (DP / D _ T _ (max)) of the methane-coal dust composite explosion are fitted to the quadratic function relation and the linear relationship respectively with the coal dust concentration (C _ (1)) and the coal dust particle size (D _ (1)). The maximum explosion pressure of methane-coal dust composite explosion (PSP) and methane concentration C _ (2)) fitted equation satisfies the cubic function relationship. The most dangerous conditions of methane-coal dust composite explosion in this experimental device are: methane concentration 5, coal dust concentration 400 g / m ~ (3), coal dust particle size 43 渭 m, ignition delay time 100 ms. in this test device, the most dangerous conditions are: methane concentration 5, coal dust concentration 400 g / m ~ (3), coal dust particle size 43 渭 m, ignition delay time 100 mm 路s ~ (-1). The maximum explosion pressure and the maximum pressure rise rate can reach 0.69 MPA and 15.82 MPA / s respectively.
【学位授予单位】:中北大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TD712.7;TD714.5
【参考文献】
相关期刊论文 前10条
1 陆守香,黄涛,龙新平,范宝春;沉积粉尘的激波点火[J];爆炸与冲击;1996年01期
2 张引合;张延松;任建喜;;煤尘对低浓度瓦斯爆炸的影响研究[J];矿业安全与环保;2006年06期
3 毕明树;李江波;;密闭管内甲烷—煤粉复合爆炸实验研究[J];矿业安全与环保;2010年06期
4 李延鸿;谭立新;;管道式气体、粉尘爆炸实验装置设计尺寸的确定[J];工业安全与环保;2006年01期
5 桂晓宏,林伯泉;火焰速度与超压关系[J];淮南工业学院学报;1999年04期
6 陈娟;赵耀江;;近十年来我国煤矿事故统计分析及启示[J];煤炭工程;2012年03期
7 尉存娟;谭迎新;郭紫晨;;瓦斯爆炸激波诱导沉积煤尘爆炸的试验研究[J];煤炭科学技术;2009年11期
8 徐景德,杨庚宇;置障条件下的矿井瓦斯爆炸传播过程数值模拟研究[J];煤炭学报;2004年01期
9 毕明树;王洪雨;;甲烷-煤尘复合爆炸威力实验[J];煤炭学报;2008年07期
10 林柏泉,张仁贵,吕恒宏;瓦斯爆炸过程中火焰传播规律及其加速机理的研究[J];煤炭学报;1999年01期
相关博士学位论文 前2条
1 徐景德;矿井瓦斯爆炸冲击波传播规律及影响因素的研究[D];中国矿业大学(北京);2003年
2 陈东梁;甲烷/煤尘复合火焰传播特性及机理的研究[D];中国科学技术大学;2007年
相关硕士学位论文 前4条
1 王洪雨;密闭空间甲烷—煤尘复合爆炸强度研究[D];大连理工大学;2007年
2 齐峰;障碍物对甲烷—煤粉爆炸强度影响的实验研究[D];大连理工大学;2008年
3 郑超峰;激波卷扬粉尘爆炸试验研究[D];中北大学;2008年
4 李江波;密闭管内甲烷—煤粉复合爆炸实验研究[D];大连理工大学;2010年
,本文编号:1562424
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/1562424.html