基于ANSYS Workbench的输液波纹管道振动特性分析和振动控制的研究
发布时间:2018-03-31 04:05
本文选题:波纹管 切入点:流固耦合 出处:《河北科技大学》2013年硕士论文
【摘要】:波纹管作为输液管道的一种,也是一种关键的补偿元件,主要的结构特征是波形膨胀节,能够对管道起到减振降噪的作用。管道常常会因温度变化,机械位移或流体振动引起波纹管的振动,特别是在石油输送、化工工业、金属冶金、电力远输、船舶、核能、航天等各种工业领域中有较大的体现。在工程实际中,输液管道常会因为流固耦合作用产生振动,对管道结构系统造成重大危害。在输液管道中液体的不连续加压是引起管道流固耦合振动的关键因素,所以对输液管道流固耦合振动特性的研究,以及采取有效的管道振动控制方法的探讨是很有必要的。本文以波纹管为例,基于ANSYS有限元软件,数值分析了管道流固耦合的振动特性,为波纹输液管道在工程应用中的进一步研究奠定了基础。 在前人研究输液管道流固耦合的基础上,通过输液管道系统的轴向振动4-方程模型和横向振动4-方程模型了解管道系统流固耦合振动机理。如果忽略对于振动控制方程中的非稳定的因素,可以得到在稳态条件下的控制方程,从而可以求解出管道系统的初始条件。然后以输液直管的振动控制方程为依据,针对波纹管道流固耦合,确定波纹管初始条件和边界条件,为波纹管的流固耦合振动模型的建立和在ANSYS Workbench中模型边界条件的设置提供了理论基础 应用三维造型软件Pro/E和有限元分析软件ANSYS ICEM建立波纹管高精度的有限元模型;利用ANSYS Workbench的双向隐式迭代法,计算波纹管道系统的动力学特性。与直管道振动特性的相比较,得出波纹管管壁变截面是引起强烈流固耦合的主要因素。针对两种不同形式的进口压力(常压和连续压力脉冲),分析了波纹管道系统的振动特性,得出在连续压力脉冲作用下,波纹管的振动更加剧烈。对工程中波纹输液管道的利用和振动控制研究提供有价值的参考。 初步探讨了波纹管振动控制,控制措施是在波纹管内壁上附着一层阻尼材料。在其他参数设置不变的情况下,通过仿真计算结果表明此方法能够有效地稳定管道内液体流场,抑制了波纹管道的振动。
[Abstract]:Corrugated pipe, as a kind of transfusion pipeline, is also a key compensation element. The main structural feature of corrugated pipe is the waveform expansion joint, which can reduce the vibration and noise of the pipeline. The vibration of bellows caused by mechanical displacement or fluid vibration, especially in the fields of petroleum transportation, chemical industry, metal metallurgy, electric power distant transportation, ship, nuclear energy, aerospace and so on. Because of the fluid-solid coupling effect, the fluid transmission pipeline often produces vibration, which causes great harm to the pipeline structure system. The discontinuous pressure of the liquid in the pipeline is the key factor to cause the fluid-solid coupling vibration in the pipeline. Therefore, it is necessary to study the fluid-solid coupling vibration characteristics of the pipeline and to discuss the effective vibration control method. This paper takes the bellows as an example, based on the ANSYS finite element software, The vibration characteristics of fluid-solid coupling of pipeline are numerically analyzed, which lays a foundation for further research of corrugated pipeline in engineering application. On the basis of previous studies on fluid-solid coupling of fluid transmission pipeline, Through the axial vibration 4- equation model and the transverse vibration 4- equation model of the pipeline system, the mechanism of fluid-solid coupling vibration of the pipeline system is studied. If the unsteady factors in the vibration governing equation are ignored, The governing equation under steady condition can be obtained, and the initial conditions of pipeline system can be solved. Then, based on the vibration control equation of straight pipe, the initial conditions and boundary conditions of bellows are determined for the coupling of bellows. It provides a theoretical basis for the establishment of fluid-solid coupling vibration model of bellows and the setting of boundary conditions of the model in ANSYS Workbench. The three-dimensional modeling software Pro/E and the finite element analysis software ANSYS ICEM are used to establish the high-precision finite element model of corrugated pipe, and the bidirectional implicit iterative method of ANSYS Workbench is used to calculate the dynamic characteristics of corrugated pipeline system. It is concluded that variable cross section of corrugated pipe wall is the main factor causing strong fluid-solid coupling. For two different types of inlet pressure (atmospheric pressure and continuous pressure pulse), the vibration characteristics of corrugated pipe system are analyzed, and it is concluded that under the action of continuous pressure pulse, The vibration of corrugated pipe is more intense, which provides a valuable reference for the study of the use and vibration control of corrugated pipeline in engineering. The vibration control of bellows is preliminarily discussed. The control measure is to attach a layer of damping material to the inner wall of the bellows. When other parameters are fixed, the simulation results show that the method can effectively stabilize the fluid flow field in the pipe. The vibration of the bellows is restrained.
【学位授予单位】:河北科技大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TB535
【参考文献】
相关期刊论文 前10条
1 李运华,焦宗夏,王占林;一种主动液压滤波器的理论分析[J];北京航空航天大学学报;1999年02期
2 张曙光,徐烈,刘凤梁,孙恒,朱红梅;低温液体管路输送中几个问题的分析[J];低温与超导;2004年04期
3 任德鹏,丁鹏飞,夏新林,谈和平;低温液体充填管路的数值计算[J];工程热物理学报;2004年01期
4 曾国华;孔建益;李公法;杨金堂;蒋国璋;熊禾根;;充液管道系统振动能量流研究[J];湖北工业大学学报;2006年03期
5 王凤丽,宋继良,谭光宇,刘美娟;在ANSYS中建立复杂有限元模型[J];哈尔滨理工大学学报;2003年03期
6 王征;吴虎;贾海军;;流固耦合力学的数值研究方法的发展及软件应用概述[J];机床与液压;2008年04期
7 张艳萍;徐治萍;刘土光;张涛;;输液管道流固耦合的响应分析[J];中国舰船研究;2006年03期
8 卢学成;叶正寅;张陈安;;基于ANSYS/CFX耦合的机翼颤振分析[J];计算机仿真;2010年09期
9 杜平安;有限元网格划分的基本原则[J];机械设计与制造;2000年01期
10 徐合力;蒋炎坤;;弯曲输流管道流固耦合流动特性研究[J];武汉理工大学学报(交通科学与工程版);2008年02期
,本文编号:1689048
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/1689048.html