建筑街区重密度气态污染物通风稀释过程研究
本文选题:建筑参差比 切入点:重密度气态污染物 出处:《湖南工业大学》2017年硕士论文
【摘要】:随着计算机和数值模拟技术的飞速发展和广泛应用,利用计算流体动力学方法研究城市街区中的污染物扩散问题已经成为一种高效、便利的研究手段。在城市街区的污染问题中,污染物自身的特性是决定其在街区峡谷中的扩散方式的重要因素。重密度气态污染物不同于能够轻易被城市风携带进而被稀释的密度近或轻于空气的气态污染物,其因受限于本身密度大、重量大的特性,缺乏良好的跟随性,因此,重密度气态污染物在城市街区中的扩散方式有一定的研究意义。本文主要利用计算流体动力学方法,分别选用参差比为0.0,0.2,0.4,0.6和0.8等5种建筑模型,探讨了分别位于城区外的重密度污染源和位于城区中心的重密度气态污染源,在水平自然风条件下于不同参差比建筑物间的沉积过程,以及探究街区内行人区重密度气态污染物的分布与建筑参差比之间的关系。本文首先通过对位于城市街区外的汞源受郊外来风影响在城市街区中扩散的稳态情况进行模拟,研究城市街区建筑物高低错落分布的布局对汞蒸气在城区中扩散的影响。模拟结果发现,城市街区不同高度建筑物错落分布会促进高空汞污染源在行人区的聚集,使得街区行人区汞浓度明显增大;并且随着街区建筑物参差比的增大,最高汞浓度值所在的街道逐渐向汞源方向靠近,较高建筑物背风面街道行人区汞质量流量明显高于较矮建筑物背风面街道行人区汞质量流量。然后结合时间线对街区中心爆发的甲苯在城市风作用下于街区中的扩散情况进行非稳态模拟,探究甲苯的扩散与时间与城区建筑参差比的关系。结果发现,当街区建筑高度一致时,甲苯扩散到下风向街道所花费的时间比建筑高度不一致时短;当街区建筑高度不一致时,位于较高建筑背风面街道的甲苯浓度普遍高于位于较矮建筑背风面街道的浓度;当建筑高度一致时,各街道的甲苯浓度随时间延长而降低,但当建筑高度不一致时,位于下风向街道的甲苯甚至会重新聚集回到行人区;经过一段时间后,爆发源所在街道的甲苯浓度属建筑参差比为0.4的街区甲苯浓度最高,其次为建筑参差比为0.6和0.8的街区,最后为建筑参差比为0.2和0的街区。最后还利用PIV粒子图像测速系统测量了缩比例尺的城市街区水箱模型内的流场,验证了计算流体动力学(computational fluid dynamics,CFD)在研究城市街区气流组织问题上的准确性。本文结合稳态和非稳态的数值模拟,探究了重密度气态污染物在建筑物高低不同错落分布的城市街区中的扩散规律。研究结果城市街区人居环境中的针对重密度气态污染物的治理工作提供了理论依据,有利于城区中受污染街道的具体位置和不同街道受污染的程度等级的确定,具有一定的实际意义。
[Abstract]:With the rapid development and wide application of computer and numerical simulation technology, the use of computational fluid dynamics (CFD) to study pollutant diffusion in urban blocks has become an efficient and convenient means of research.In the problem of urban district pollution, the characteristic of pollutant itself is an important factor to determine its diffusion mode in the district canyon.Heavy density gaseous pollutants are different from gaseous pollutants which can be easily carried and diluted by urban wind. Because they are limited by their own characteristics of high density and heavy weight, they lack good follow-ability.The diffusion of heavy density gaseous pollutants in urban blocks is of great significance.In this paper, using computational fluid dynamics (CFD) method, five kinds of building models, such as 0. 0. 2 0. 2, 0. 4, 0. 6 and 0. 8, are selected, respectively. The heavy density pollution sources located outside the urban area and the heavy density gaseous sources located in the center of the city are discussed, respectively.Under the condition of horizontal natural wind, the deposition process between buildings with different staggered ratios and the relationship between the distribution of heavy density gaseous pollutants in pedestrian areas and the building staggered ratios in the pedestrian areas were investigated.In this paper, firstly, the steady state of mercury source located outside the city block is simulated to study the influence of the distribution of building height and height on the diffusion of mercury vapor in the urban area.The simulation results show that the distribution of buildings with different height in urban blocks will promote the accumulation of high-altitude mercury pollution sources in pedestrian areas, and make the mercury concentration in pedestrian areas increase obviously, and with the increase of the ratio of buildings to buildings,The street with the highest mercury concentration value gradually approached to the mercury source, and the mercury mass flux in the pedestrian area of the street with higher building leeward was obviously higher than that in the pedestrian area on the leeward street of the lower building.Then unsteady simulation of toluene diffusion in the block under the action of urban wind is carried out with time line, and the relationship between toluene diffusion and time and the ratio of urban buildings to the difference between toluene diffusion and urban buildings is explored.The results showed that when the building height of the block was consistent, the time taken by toluene to spread to the downwind street was shorter than that when the building height was inconsistent, and when the building height of the block was not consistent,The concentration of toluene in the street at the higher building leeward was generally higher than that in the street at the lower building. When the building height was consistent, the toluene concentration in each street decreased with time, but when the building height was inconsistent, the concentration of toluene in the street decreased with time, but when the height of the building was not consistent,The toluene in the downwind streets even regrouped back into the pedestrian area; after a while, the toluene concentration in the street where the outbreak occurred was the highest in the block with a building staggered ratio of 0.4, followed by the block with the building disparity ratios of 0.6 and 0.8.The last block is a block with a staggered ratio of 0.2 and 0.Finally, the flow field in the water tank model of urban block is measured by using PIV particle image velocimetry system, which verifies the accuracy of computational fluid dynamics (CFD) in the study of urban block airflow organization.Based on the numerical simulation of steady and unsteady state, the diffusion law of heavy density gaseous pollutants in urban blocks with different distribution of buildings is studied in this paper.The results of the study provide a theoretical basis for the treatment of heavy density gaseous pollutants in the residential environment of urban blocks, which is beneficial to the determination of the specific location of polluted streets and the degree of pollution of different streets in urban areas.Has certain practical significance.
【学位授予单位】:湖南工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X51;TU834
【参考文献】
相关期刊论文 前10条
1 赵福云;肖婷;李林;梅硕俊;刘呈威;王汉青;;汞蒸气在参差建筑街区中沉积过程模拟[J];中国环境科学;2016年06期
2 杨嘉睿;;化工安全与环境保护的重要性——从天津大爆炸说起[J];化工管理;2016年02期
3 朱佳雷;王体健;王婷婷;Leiming Zhang;;中国地区大气汞沉降速度研究[J];生态毒理学报;2014年05期
4 李沁怡;蔡旭晖;康凌;;建筑扰动条件下大气流动与扩散的CFD模拟[J];环境科学研究;2013年08期
5 陈健;杨坤丽;段省强;;基于数值模拟的成都场镇街道风环境研究[J];四川建筑;2013年03期
6 李磊;吴迪;张立杰;袁磊;;基于数值模拟的城市街区详细规划通风评估研究[J];环境科学学报;2012年04期
7 权建农;张晓山;张蔷;李宏宇;;我国燃煤汞沉降的数值模拟[J];高原气象;2009年01期
8 王宏亮;龙惟定;;街道峡谷内污染物扩散对周边建筑物自然通风影响的研究进展[J];暖通空调;2009年01期
9 项剑桥;刘刚;;武汉城区大气汞分布特征及来源分析[J];资源环境与工程;2008年S2期
10 彭世尼;周廷鹤;;燃气泄漏与扩散模型的探讨[J];煤气与热力;2008年11期
相关会议论文 前1条
1 彭小勇;邓进波;谢东;顾炜莉;;大空间建筑火灾烟气扩散的盐水实验与PIV测试[A];全国暖通空调制冷2004年学术文集[C];2004年
相关博士学位论文 前3条
1 巫承洲;典型有机污染物的皮肤吸收、气—水界面迁移及人工碎屑的介导效应[D];中国科学院研究生院(广州地球化学研究所);2016年
2 赵福云;室内空气多态模拟及对流反演[D];湖南大学;2008年
3 赵利容;广州市城区街道毒害空气污染物暴露特征及其来源分析[D];中国科学院研究生院(广州地球化学研究所);2005年
相关硕士学位论文 前9条
1 杨帆;降雨对大气颗粒物和气态污染物的清除效率及机制[D];南昌大学;2015年
2 唐华君;基于CFD和PIV技术的街道峡谷内污染物扩散规律研究[D];山东建筑大学;2015年
3 梁增强;京津冀典型城市环境污染特征、变化规律及影响机制对比分析[D];北京工业大学;2014年
4 何雨峰;二维街谷风场和污染物扩散的数值模拟研究[D];华东师范大学;2013年
5 霍旭杰;城市街道空间对交通峡谷内污染物扩散的影响研究[D];长安大学;2012年
6 熊胜益;城市街谷型交叉口内汽车尾气污染的试验及数值模拟研究[D];西安建筑科技大学;2011年
7 张强;机动车尾气扩散流动CFD数值模拟[D];南京理工大学;2007年
8 梁文;同向流动条件下附壁热射流的数值模拟和实验研究[D];河海大学;2006年
9 赵福云;城市住宅小区热环境数值模拟[D];湖南大学;2003年
,本文编号:1729141
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/1729141.html