CAS防撞算法的目标跟踪技术的研究与实现
发布时间:2018-04-13 22:14
本文选题:TCAS + CAS ; 参考:《电子科技大学》2015年硕士论文
【摘要】:安全是航空业永恒的主题。为了保证飞机的飞行安全,必须获知一定范围内飞机的飞行状态信息,包括位置、速度、预期航迹等,据此对各机的飞行状态做出调整以保证安全。运行于地面的空中交通管制系统(ATC)并不能完全保证飞行安全,机载防撞系统(TCAS)作为ATC系统的一个备份,独立于ATC系统运行,用于避免空中飞机相撞。TCAS对本机周围一定范围内的飞机进行监视、跟踪以及向飞行员提供防撞咨询,目标跟踪是TCAS正常工作的基础,直接决定了防撞咨询的可靠性,CAS防撞系统是TCAS的核心子系统,完成跟踪和防撞咨询功能。本文主要研究和实现CAS防撞系统的目标跟踪技术。对周围飞机的跟踪是一个三维空间目标跟踪问题,由于TCAS在垂直方向和水平方向的跟踪测量方法不同,论文分别从垂直方向和水平方向对目标跟踪器进行设计和实现:垂直方向上,TCAS的测量高度报告分为25ft精度和100ft精度。对25ft精度,跟踪器采用-滤波器;对100ft精度,在采用-滤波器时会产生不可接受的跟踪误差,设计了非线性高度跟踪器,核心思想是利用多次高度层穿越占用时间以及穿越高度层数来计算高度率,间接对高度进行跟踪,并将飞行过程划分为5个不同状态,针对不同状态采用不同修正公式对高度率进行修正。仿真结果及误差分析显示非线性高度跟踪器在跟踪精度和响应时间两方面均优于-跟踪器,有效提高TCAS做出防撞咨询的可靠性。水平方向上,水平跟踪主要利用-滤波器和卡尔曼滤波器。水平方向的机动情况复杂,为快速对机动情况进行跟踪设计了三个独立跟踪器:笛卡尔跟踪器、抛物线跟踪器和距离方位跟踪器,针对不同的目的和不同的条件采用不同的跟踪器,最后综合三个跟踪器的结果以及飞行过程数学模型进行跟踪。仿真结果验证了水平跟踪器在跟踪精度和应对机动情况的及时性两方面均满足TCAS最低性能标准的要求。为了方便直观的对跟踪系统进行仿真测试,设计了基于Matlab的可视化综合仿真平台,采用TCAS系统标准规定的测试用例对跟踪算法进行仿真测试,结果表明跟踪系统可以有效实现CAS防撞系统对于跟踪性能的要求,可应用与工程实际中。
[Abstract]:Safety is the eternal theme of the aviation industry.In order to ensure the flight safety of the aircraft, it is necessary to know the flight state information of the aircraft in a certain range, including the position, speed, expected track and so on. According to this, the flight state of each aircraft must be adjusted to ensure the safety.Air Traffic Control system (ATC) running on the ground can not guarantee flight safety completely. As a backup of the ATC system, the airborne anti-collision system runs independently of the ATC system.It is used to avoid air plane collision. TCAS monitors, tracks and provides anti-collision advice to pilots in a certain range around the aircraft. Target tracking is the basis of normal operation of TCAS.The reliability of anti-collision consultation system is the core subsystem of TCAS, which completes the function of tracking and anti-collision consultation.This paper mainly studies and realizes the target tracking technology of CAS anti-collision system.The tracking of surrounding aircraft is a three-dimensional object tracking problem. Because of the different tracking and measuring methods of TCAS in vertical and horizontal direction,In this paper, the target tracker is designed and implemented from the vertical direction and the horizontal direction. The height report of the 25ft is divided into 25ft accuracy and 100ft precision.For 25ft precision, the tracker adopts a filter, and for the 100ft precision, an unacceptable tracking error occurs when using the 100ft filter. A nonlinear height tracker is designed.The core idea is to calculate the altitude rate by using the time and number of traversing altitude layers, to track the altitude indirectly, and to divide the flight process into five different states.According to different states, different correction formulas are used to modify the height rate.The simulation results and error analysis show that the nonlinear height tracker is superior to the tracker in both tracking accuracy and response time, which effectively improves the reliability of TCAS in making anti-collision consultation.Horizontal tracking mainly uses-filter and Kalman filter.Three independent trackers are designed for the fast tracking of maneuvering: Cartesian tracker, parabola tracker and distance azimuth tracker.Different trackers are used for different purposes and different conditions. Finally, the results of the three trackers and the mathematical model of flight process are synthesized to track.The simulation results show that the horizontal tracker meets the requirements of TCAS minimum performance standard in terms of tracking accuracy and timeliness of responding to maneuvering conditions.In order to test the tracking system conveniently and intuitively, a visual comprehensive simulation platform based on Matlab is designed, and the tracking algorithm is simulated and tested by the test cases specified in the TCAS system standard.The results show that the tracking system can effectively meet the tracking performance requirements of CAS collision prevention system and can be applied in engineering practice.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:V328;V244.11
【参考文献】
相关期刊论文 前1条
1 彭良福;林云松;;机载防撞系统垂直防撞的物理模型[J];电讯技术;2010年08期
,本文编号:1746431
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/1746431.html