三支决策粗糙集理论在矿井顶板突水中的应用
本文选题:顶板突水 + 三支决策粗糙集 ; 参考:《山东科技大学》2017年硕士论文
【摘要】:在我国,煤炭储存量比较丰富,不过其使用量也极大,并且对促进我国国民经济发展具有深远影响而成为我国重要的基础能源。在煤炭产量节节升高之时,对于煤层的开采也越来越深入,因此开采地层环境也变得更为复杂,造成煤层顶板突水发生事故的几率增加,因此作者在前人的基础上引入三支决策粗糙集理论,用于研究煤层顶板突水危险性评价,为煤矿安全生产尽一份力量。文章选取矿井顶板突水的主要因素:顶板隔水层隔水强度,导水裂隙带高度,含水层水压,上覆含水层的富水程度,地质构造发育情况五个因素。将五个因素代入SPSS22中,根据显著性选出顶板隔水层隔水强度,导水裂隙带高度,地质构造发育情况三个因素,排除含水层水压,上覆含水层的富水性这两个因素。三支决策粗糙集将贝叶斯风险分析和概率性风险关系引入粗糙集中,设置了三种决策规则。之后将顶板隔水层隔水强度,导水裂隙带高度,地质构造发育情况三个因素代入二元logistic方程,求出每个样本数据的突水的条件概率。然后采取一种自适算法求阀值α, β,根据样本突水概率与阀值α,β的关系将样本分成突水,不突水,延迟决策三类。通过上述三支决策粗糙集理论建立的煤矿顶板突水预测系统将操作予以简化,不失为一种用于煤矿顶板突水预测的有效方法。将三支决策粗糙集理论用于对老公营子煤矿与鲍店煤矿5304-2工作面验证,老公营子煤矿顶板发生顶板突水的概率大于α,鲍店煤矿5304-2工作面顶板发生的概率小于β,符合三支决策规律,从而证实了三支决策粗糙集方法在顶板突水预测中的可行性。矿井顶板突水预测系统由Visual Basic语言编程而来,分为煤矿数据信息文件中的矿井板突水预测系统以及管理系统2个,同时矿井数据文件中的管理子系统为突水预测提供数据支持,并且针对顶板突水因素信息进行管理。根据计算相关的条件概率与阈值而设计的矿井顶板突水预测子系统,能够对矿井顶板突水情况作出合理判断。
[Abstract]:In China, coal storage is relatively rich, but its use is also great, and has a far-reaching impact on promoting the development of China's national economy, and has become an important basic energy in China. When the coal production is increasing, the mining of coal seam is getting deeper and deeper, so the mining environment becomes more complicated, resulting in an increase in the probability of water inrush from the roof of coal seam. Therefore, the author introduces the three-branch decision rough set theory on the basis of predecessors, which is used to study the risk assessment of coal seam roof water inrush, so as to make a contribution to the safety of coal mine production. In this paper, the main factors of water inrush from mine roof are selected as follows: water insulation intensity of roof partition layer, height of water-conducting fissure zone, water pressure of aquifer, water enrichment degree of overlying aquifer, and development of geological structure. In this paper, five factors are added to SPSS22. According to the significance, three factors are selected, such as the water insulation intensity of roof partition layer, the height of water-conducting fissure zone and the development of geological structure, and the water pressure of aquifer and the water enrichment of overlying aquifer are excluded. Three sets of decision rough sets introduce Bayesian risk analysis and probabilistic risk relation into rough sets and set up three kinds of decision rules. After that, three factors, such as the water insulation intensity, the height of the water-conducting fissure zone and the development of the geological structure, are substituted into the binary logistic equation, and the conditional probability of water inrush for each sample data is obtained. Then an adaptive algorithm is adopted to calculate the threshold 伪, 尾. According to the relationship between the probability of water inrush and the threshold 伪, 尾, the samples are divided into three categories: water inrush, no water inrush and delayed decision. The coal mine roof water inrush prediction system established by the above three decision rough set theory simplifies the operation and is an effective method for the prediction of coal mine roof water outburst. The theory of three-branch decision rough set is applied to verify the 5304-2 coal face of Cengyingzi Coal Mine and Baodian Coal Mine. The probability of roof water inrush in Laoyingzi coal mine is greater than 伪, and the probability of roof water inrush in Baodian coal mine 5304-2 face is less than 尾, which accords with the rule of three branches of decision making, which proves the feasibility of three branches decision rough set method in predicting roof water inrush. The prediction system of mine roof water inrush is programmed by Visual Basic language. It is divided into two parts: mine board water inrush prediction system and management system. Meanwhile, the management subsystem in mine data file provides data support for water inrush prediction. And for roof water inrush factor information management. Based on the calculation of the relative conditional probability and threshold value, the prediction subsystem of mine roof water inrush can make a reasonable judgment on the situation of mine roof water inrush.
【学位授予单位】:山东科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD745.2
【参考文献】
相关期刊论文 前10条
1 邢一飞;张诚;王建辉;;2007~2014年我国煤矿突水事故分析及规律研究[J];煤炭技术;2016年07期
2 张雁;;老公营子煤矿煤层顶板突水机理[J];煤田地质与勘探;2015年04期
3 李博;;灰色关联-层次分析法的煤层顶板突水危险性评价模型[J];河南理工大学学报(自然科学版);2015年03期
4 杨培功;张雁;郭英杰;;老公营子煤矿顶板突水机理与防水安全煤岩柱留设研究[J];煤矿安全;2015年05期
5 李坤;曾一凡;尚彦军;武强;何万通;;基于GIS的“三图 双预测法”的应用[J];煤田地质与勘探;2015年02期
6 杨志超;张成龙;吴奕;安薇薇;朱海兵;龚灯才;;基于粗糙集和RBF神经网络的变压器故障诊断方法研究[J];电测与仪表;2014年21期
7 石黎;史玉珍;;基于粗集和BP神经网络的城市水资源可持续利用评价模型[J];水电能源科学;2014年06期
8 严群;孙杰;王秋生;王庆峰;田力;;基于模糊聚类神经网络的煤炭资源等级划分方法——以内蒙古煤炭资源预测区为例[J];中国煤炭地质;2014年05期
9 冯雨;谢守祥;;中国煤炭产业周期性影响因素研究[J];中国煤炭;2014年01期
10 谢骋;商琳;;基于三支决策粗糙集的视频异常行为检测[J];南京大学学报(自然科学版);2013年04期
相关硕士学位论文 前6条
1 魏真;基于SVR的煤层顶板水害分析模型研究[D];中国矿业大学;2015年
2 罗斌;基于GIS的顶板水害条件分析及多源信息综合评价[D];中国矿业大学;2014年
3 乔育锋;遗传算法和BP神经网络在煤矿突水预测中的应用研究[D];西安建筑科技大学;2011年
4 秦军;煤炭市场及其稳定供给的策略研究[D];浙江大学;2009年
5 王苗;基于灰色理论的矿井顶板涌水量预测模型的建立与应用[D];山东科技大学;2007年
6 俞海玲;基于模糊物元模型的矿井顶板涌水预测方法研究[D];山东科技大学;2006年
,本文编号:1790842
本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/1790842.html