当前位置:主页 > 科技论文 > 安全工程论文 >

长江三角洲自然灾害数据库建设与风险评估研究

发布时间:2018-07-14 13:58
【摘要】:目前,日益严重的灾害问题已经引起我国政府和学术界的高度关注。自然灾害风险评估是一项以预防为主、防患于末然的重要防灾减灾措施,是开展综合减灾和制定应急管理对策的基础和依据,是目前灾害研究领域的热点。在全球变暖与海平面上升的背景下,针对自然灾害发生频率和强度不断增高、灾害损失日益加剧这一趋势,选取我国长江三角洲地区(江苏、浙江、上海两省一市全境)为研究区,基于自然灾害研究的相关理论,消化吸收国内外研究的最新成果,建立自然灾害分类体系,采集相关灾害数据,构建自然灾害元数据标准和数据库,并应用情景分析的方法和GIS技术,开展了长江三角洲地区自然灾害风险评估研究,为政府部门构建区域风险管理体系,促进防灾减灾工作的开展提供了科学依据。主要研究结果如下: (1)以地球系统科学为基础,按圈层结构确定自然灾害性质并分类。在这一分类体系中,气象、水文、地质、生物四大类型分别对应地球表层系统结构中的大气圈、水圈、岩石圈和生物圈,有利于辨识和分析各致灾因子所处的孕灾环境,开展有针对性的脆弱性评价和风险分析。该分类体系是构建自然灾害元数据标准和长江三角洲自然灾害数据库的重要参照,既借鉴了国际现行的自然灾害分类方法,也兼顾了国内灾害研究和相关部门长期以来的分类习惯,具备良好的兼容性和可扩展性。 (2)在通过报刊资料采集自然灾害历史数据时,应重点关注三个问题:文本语义理解和自然灾害数据的抽取;自然灾害事件的时空位置描述与匹配:自然灾害数据或文本信息的精度和可靠性评价。当数据预处理和收录工作完成以后,需要进行科学的数据编码,为每一条记录设置唯一的序列号作为标识。自然灾害类型编码可采用分类码+标识码的方法,自然灾害事件编码可采取自然灾害事件发生的具体日期+当日编号的格式。 (3)通过分析元数据和元数据标准的定义、特征、分类以及作用,提出了自然灾害元数据标准的设计思路,并完成了自然灾害元数据标准的构建,可以为自然灾害数据管理和数据库开发提供服务,也为自然灾害数据共亨提供了支持。自然灾害元数据标准的编制,定义了自然灾害元数据的内容、结构和格式。具体标准涵盖六大实体、33个元素,另有36个子元素。对于每一个元数据元素,均有九个属性对其加以限制和说明。 (4)在对国内外主要自然灾害数据库进行对比分析,总结国际先进经验以及我国现存问题的基础上,提出了长江三角洲自然灾害数据库的建设思路,主要包含建设原则、总体设计和软硬件环境三方面。完成了长江三角洲自然灾害数据库的结构设计,建立了数据概念模型,详细介绍了各数据表的结构及关系,并讨论了长江三角洲自然灾害数据库的管理和维护,主要包括用户管理、数据管理、数据库性能维护、数据库备份与恢复等。 (5)对近60年长江三角洲地区自然灾害时空演变开展研究,分析其时空格局及特征,讨论了自然灾害发生次数年际和月际的变化,从省(直辖市)和县(市辖区)两级行政单元剖析了自然灾害发生次数的空间分布。结果显示:自然灾害高发区集中在长江三角洲地区沿海的各县(市辖区),就整个长江三角洲地区而言,中部和南部的自然灾害发生情况相较北部更为严重。在此基础上,建立了阶线性自回归预测模型,对长江三角洲地区自然灾害未来的变化趋势作了分析与预测。根据计算结果,长江三角洲地区未来至2020年,自然灾害的发生次数呈现上升趋势。2010年出现的高峰在2013年略有回落,但2013年以后则一直稳步升高。预计到2016年,自然灾害发生次数将重新回到2010年的水平。到2020年,将会出现新的历史峰值。 (6)在重现期为10年的台风灾害情景下,各县(市辖区)的灾损率均较低,低脆弱性和中等脆弱性的地区面积相当,多数县(市辖区)属于低风险或较低风险。在重现期为50年的台风灾害情景下,低脆弱性和较低脆弱性的县(市辖区)只剩零星分布,大多数地区都达到中等或较高的脆弱性,低风险和较低风险地区面积大幅缩减,江苏和浙江都出现了许多中等风险或较高风险的县(市辖区)。在重现期为100年的台风灾害情景下,长江三角洲地区大部分县(市辖区)都呈现较高脆弱性或高脆弱性,中部几乎均为高风险或较高风险地区,北部有大量中等风险地区,南部风险相对较低。 (7)在重现期为10年的洪水灾害情景下,连云港、盐城、扬州、上海、绍兴、丽水、台州等地区呈现高或较高脆弱性,常州、苏州等地区呈现总体偏低的脆弱性,长江三角洲中部地区风险较高,苏北地区、浙江中部和南部大片地区风险较低。在重现期为50年的洪水灾害情景下,较低脆弱性的地区仅余遂昌、溧阳两地,原有的低风险区面积缩减了约一半,高风险区向南北扩张,苏南、浙北地区的风险有所提升。在重现期为100年的洪水灾害情景下,长江三角洲地区出现比较极端的脆弱性分布,全境大多数地区都呈现高脆弱性,中部的高风险地区面积继续扩大,总体风险较低的地区仅剩浙西南以丽水地区为代表的少数区域。 (8)在重现期为10年的暴雨灾害情景下,各县(市辖区)总体属于中低脆弱性,风险也较低。在重现期为50年的暴雨灾害情景下,长江三角洲地区脆弱性整体上升,绝大多数区域为中高脆弱性,较低脆弱性仅在浙江中部和东北部有零星分布,中等风险的区域面积扩张较多,低风险和较低低风险区域主要分布在江苏北部和浙江南部。在重现期为100年的暴雨灾害情景下,长江三角洲地区脆弱性继续攀升,大量出现高脆弱性区域,仅有少量中等脆弱性地区,原有的高风险区域向北发展较快,而浙江南部则拥有比较稳定的低风险和较低风险区域。 (9)在重现期为10年的风暴潮灾害情景下,长江三角洲沿海地区总体呈现中等偏低的脆弱性,风险水平总体也不高。在重现期为50年的风暴潮灾害情景下,长江三角洲沿海多数地区处于中等脆弱性,脆弱性较高的区域有比较明显的增加,风险主要集中于中部沿海地带。在重现期为100年的风暴潮灾害情景下,长江三角洲沿海地区绝大多数县(市辖区)都呈现偏高的脆弱性,且处于中高风险水平,高风险区和较高风险区继续扩张,只有苏北和浙北沿海还有很少量的区域风险相对较低。 (10)在重现期为10年的十早灾害情景下,整个长江三角洲地区未出现高脆弱性区域,少量低脆弱性区域主要出现在苏北、浙江中部和舟山地区,高风险区域主要集中在长江三角洲中部地区,风险最低的地区位于浙江南部。在重现期为50年的干旱灾害情景下,长江三角洲地区的中部和北部出现了一定数量的高脆弱性县(市辖区),较低脆弱性区域仅余浙江的东阳市和金华市辖区两处,中部的高风险区面积有所扩大。在重现期为100年的干旱灾害情景下,大多数县(市辖区)旱现出高脆弱性,已无脆弱性相对较低的地区和低风险区域,除浙江省西部和南部总体风险水平相对较低外,其余地区儿乎都处于中高风险水平。
[Abstract]:At present, the increasingly serious disaster problem has attracted the attention of the government and the academia. The risk assessment of natural disasters is an important prevention and mitigation measures, which is the main prevention and prevention of disaster. It is the basis and basis for the comprehensive disaster reduction and emergency management countermeasures. It is a hot spot in the field of disaster research and the global warming. In the context of the rising sea level, in view of the increasing frequency and intensity of natural disasters and the increasing loss of disaster, the Yangtze Delta region (Jiangsu, Zhejiang, Shanghai, two provinces and one city) is selected as the research area. Based on the related theories of natural disaster research, the latest achievements of domestic and foreign research are digested and absorbed. The disaster classification system, collecting related disaster data, constructing the standard and database of natural disaster metadata, and applying the method of scenario analysis and GIS technology, carried out the study on the risk assessment of natural disasters in the Yangtze River Delta region, which provided a scientific basis for the government departments to construct regional risk management system and promote the development of disaster prevention and reduction work. The main results are as follows:
(1) on the basis of earth system science, the nature and classification of natural disasters are determined according to the layer structure. In this classification system, the four major types of meteorology, hydrology, geology and biology correspond to the atmosphere, water, lithosphere and biosphere in the structure of the earth's surface system respectively. It is beneficial to identify and analyze the environment of disaster caused by the factors causing the disaster. This classification system is an important reference for the construction of the natural disaster metadata standard and the Yangtze River Delta natural disaster database. It not only draws on the current international classification methods of natural disasters, but also takes into account the classification habits of domestic disaster research and related departments for a long period, and has good compatibility. And extensibility.
(2) when collecting natural disaster historical data through newspapers and periodicals, we should focus on three issues: text semantic understanding and natural disaster data extraction; time and space location description and matching of natural disaster events: the accuracy and reliability evaluation of natural disaster data or text information. When data preprocessing and collection work is completed, Scientific data coding is needed to set the unique sequence number for each record as a sign. The natural disaster type code can be coded by the classification code + identification code, and the natural disaster event coding can take the specific date of the natural disaster events + the format of the day number.
(3) through the analysis of the definition, characteristics, classification and function of metadata and metadata standards, the design idea of the metadata standard for natural disasters is proposed, and the construction of the metadata standard for natural disasters is completed, which can provide service for the natural disaster data management and database development, and also provide support for the natural disaster data co hener. The metadata standard is compiled, and the content, structure and format of natural disaster metadata are defined. The specific standard covers six entities, 33 elements, and 36 sub elements. For each metadata element, there are nine attributes to restrict and explain.
(4) based on the comparison and analysis of the major natural disasters database at home and abroad, and on the basis of the advanced international experience and the existing problems in China, this paper puts forward the construction ideas of the natural disaster database of the Yangtze River Delta, including the construction principles, the overall design and the software and hardware environment in three aspects. The structure and the relation of each data table are introduced in detail, and the management and maintenance of the natural disaster database of the Yangtze River Delta are discussed, including user management, data management, database performance maintenance, database backup and recovery, etc.
(5) to study the spatio-temporal evolution of natural disasters in the Yangtze River Delta region for the last 60 years, analyze the spatial and temporal pattern and characteristics, discuss the interannual and interannual changes of the frequency of natural disasters, and analyze the spatial distribution of the frequency of natural disasters from the two level administrative units of the Province (municipality) and county (municipal district). The results show that the high incidence area of natural disasters is shown. The occurrence of natural disasters in the central and southern parts of the Yangtze River Delta region is more serious than that in the northern part of the Yangtze River Delta. On this basis, a linear autoregressive model is established to analyze and predict the future trend of natural disasters in the Yangtze River Delta. According to the calculated results, the number of natural disasters in the Yangtze River Delta region is rising in 2020, the peak of the occurrence of natural disasters is rising in.2010 years in 2013, but it has risen steadily since 2013. It is expected that by 2016, the number of natural disasters will return to 2010 level. To 2020, a new historical peak will appear.
(6) under the typhoon disaster scenario with a period of 10 years of recurrence, the damage rates of the counties (municipal districts) are low, the areas with low vulnerability and medium vulnerability are equal, and most counties (municipalities) belong to low risk or lower risk. In the typhoon disaster scenario with the recurrence period of 50 years, the low vulnerability and low vulnerability counties (municipal districts) are only fragmentary. Most areas are vulnerable to medium or high vulnerability, low risk and low risk areas have been substantially reduced, and many moderate or high risk counties (municipalities) have appeared in Jiangsu and Zhejiang. Most counties (municipalities) in the Yangtze River Delta region have high vulnerability in the 100 year recurrence period of typhoon disaster. Or high vulnerability, the central region is almost all high risk or high risk area, there are a large number of medium risk areas in the north, and relatively low risk in the south.
(7) under the flood disaster situation of 10 years, Lianyungang, Yancheng, Yangzhou, Shanghai, Shaoxing, Lishui, Taizhou and other regions showed high or high vulnerability, Changzhou, Suzhou and other regions showed overall low vulnerability, high risk in the central region of the Yangtze River Delta, North and south of Zhejiang, low risk. Under the 50 year flood disaster scenario, the region of lower vulnerability is only Suichang, and in Liyang, the area of the original low risk area has been reduced by about half, the high-risk area is expanding to the north and south, and the risk of South of Jiangsu and Northern Zhejiang is increased. In the flood disaster situation of 100 years in the recurrence period, the Yangtze River Delta region has a relatively extreme vulnerability. Distribution, most areas of the whole region are high vulnerability, the area of high risk areas in the middle of the region continues to expand, and the areas with lower overall risk are only a few areas in the southwest of Zhejiang Province, represented by the Lishui region.
(8) under the scenario of 10 years of rainstorm, all counties (municipal districts) belong to middle and low vulnerability and low risk. Under the scenario of 50 years of heavy rain disaster, the vulnerability of the Yangtze River Delta region is up as a whole, the vast majority of the regions are middle and high fragility, and the lower vulnerability is only scattered in the middle and northeast of Zhejiang. The area of equal risk has more area expansion, low risk and lower risk areas are mainly distributed in northern Jiangsu and southern Zhejiang. Under the 100 year rainstorm disaster scenario, the vulnerability of the Yangtze River Delta region continues to rise, with a large number of high vulnerability areas, only a small number of moderately fragile areas, and the original high risk area north. Faster development, while southern Zhejiang has relatively stable low risk and low risk areas.
(9) under the storm surge disaster of 10 years, the coastal areas of the Yangtze River Delta are generally low and low, and the risk level is not high generally. Under the storm tide disaster of 50 years, the coastal areas of the Yangtze River Delta are in medium vulnerability, and the region with high vulnerability increases obviously. Under the storm tide disaster of 100 years, most of the counties (municipal districts) in the coastal areas of the Yangtze River Delta are prone to high risk, at the middle and high risk level, the high risk areas and the higher risk areas continue to expand, with only a small amount of regional risk in the northern and northern coastal areas. It is lower.
(10) under the ten early disaster situation of 10 years, there is no high vulnerability area in the whole Yangtze River Delta region. A small number of low vulnerability regions mainly occur in Northern Jiangsu, central Zhejiang and Zhoushan. The high risk areas are mainly concentrated in the central region of the Yangtze River Delta, and the lowest risk area is located in the southern part of Zhejiang. The recurrence period is 50 years. Under the situation of drought disaster, a certain number of high fragile counties (municipal districts) have appeared in the middle and northern parts of the Yangtze River Delta. The lower vulnerability region is only two of Dongyang and Jinhua in Zhejiang, and the area of high risk area in the middle of the Yangtze River Delta is enlarged. In the drought disaster situation of 100 years, most counties (municipal districts) are droughts. With high vulnerability, there are no areas with relatively low vulnerability and low risk areas. In addition to the relatively low overall risk level in the western and southern parts of Zhejiang, the rest of the region are at a middle and high risk level.
【学位授予单位】:华东师范大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:X43

【参考文献】

相关期刊论文 前10条

1 徐霞,王静爱,王文宇;自然灾害案例数据库的建立与应用——以中国1998年洪水灾害案例数据库为例[J];北京师范大学学报(自然科学版);2000年02期

2 王静爱,史培军,,朱骊,陈晋,张远明,王平;中国自然灾害数据库的建立与应用[J];北京师范大学学报(自然科学版);1995年01期

3 滕五晓;;城市灾害应急预案基本要素探讨[J];城市发展研究;2006年01期

4 彭颖霞;何贞铭;占辽芳;廖野翔;李若瑶;;基于GIS的省级地质灾害数据库设计与实现[J];测绘与空间地理信息;2011年03期

5 许武成,马劲松,杨霞;洪水等级的三种划分方法[J];东北水利水电;2003年12期

6 樊隽轩;迟昭利;陈峰;陈清;;元数据标准及其在古生物数据库中的应用[J];地层学杂志;2009年04期

7 石勇;许世远;石纯;孙阿丽;王军;;洪水灾害脆弱性研究进展[J];地理科学进展;2009年01期

8 李军,周成虎;地球空间数据元数据标准初探[J];地理科学进展;1998年04期

9 李谢辉;王磊;谭灵芝;郑奕5;;渭河下游河流沿线区域洪水灾害风险评价[J];地理科学;2009年05期

10 唐川,朱静;基于GIS的山洪灾害风险区划[J];地理学报;2005年01期

相关会议论文 前1条

1 李刚;许倩英;刘惠瑾;;城市抗震防灾规划元数据标准研究——基础设施元数据模型[A];城市规划和科学发展——2009中国城市规划年会论文集[C];2009年

相关博士学位论文 前9条

1 殷杰;中国沿海台风风暴潮灾害风险评估研究[D];华东师范大学;2011年

2 叶明武;沿海台风风暴潮灾害复合情景模拟与应急避难研究-以上海为例[D];华东师范大学;2011年

3 刘东琴;地理实体数据库构建研究[D];山东科技大学;2010年

4 孟宪学;中国农业科技数据库系统建设研究[D];中国农业科学院;2002年

5 白景昌;基于遥感与地理信息系统的洪灾风险区划研究[D];中国科学院研究生院(遥感应用研究所);2004年

6 罗元华;泥石流堆积数值模拟及泥石流灾害风险评估方法研究[D];中国地质大学;1998年

7 尹占娥;城市自然灾害风险评估与实证研究[D];华东师范大学;2009年

8 权瑞松;典型沿海城市暴雨内涝灾害风险评估研究[D];华东师范大学;2012年

9 谭丽荣;中国沿海地区风暴潮灾害综合脆弱性评估[D];华东师范大学;2012年

相关硕士学位论文 前4条

1 孙阿丽;基于情景模拟的城市暴雨内涝风险评估[D];华东师范大学;2011年

2 张博;基于ArcGIS的府谷县地质灾害数据库建立及易发区评价研究[D];长安大学;2009年

3 常捷;地震元数据标准及管理构建研究[D];南京理工大学;2010年

4 谢翠娜;上海沿海地区台风风暴潮灾害情景模拟及风险评估[D];华东师范大学;2010年



本文编号:2121867

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/2121867.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1562d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com